Kang Sun | metallic glass | Best Researcher Award

Assist Prof Dr. Kang Sun | metallic glass | Best Researcher Award

shanghai university, China

Author Profile

Scopus

Early Academic Pursuits 🎓

Dr. Kang Sun’s academic journey began with a solid foundation in Materials Science and Engineering. He pursued his Ph.D. at Shanghai University from 2015 to 2021, where he focused on studying the microstructure and properties of metallic glasses under the guidance of Prof. Dr. Gang Wang. This period marked his deep dive into understanding the complex behavior of metallic materials and the factors influencing their structural integrity. Subsequently, Dr. Sun expanded his research scope internationally by enrolling in Technische Universität Dresden, Germany, where he undertook a CSC Ph.D. in Materials Engineering. His research at Dresden centered around the solidification behavior of metallic glasses, utilizing in-situ high-energy synchrotron radiation to explore their properties. His doctoral supervisors, Prof. Dr. Simon Pauly, mentored him as he gained proficiency in cutting-edge experimental techniques.

Professional Endeavors & Contributions 🧑‍🔬

Dr. Kang Sun’s professional career has been dedicated to advancing the field of metallic glasses and high-entropy alloys (HEA). As an Associate Professor at Shanghai University since October 2023, Dr. Sun’s work has pivoted to examining the structural evolution behavior and irradiation properties of metallic glasses and HEA under synchrotron radiation. His expertise and innovations have driven the exploration of these materials’ behavior under extreme conditions, a critical area of study in material science. Prior to this, he held a Post-doctoral position at Shanghai University, where he focused on the basic applications of metallic glasses, spanning from fundamental theory to practical implementations.

Research Focus & Impact 🌍

Dr. Sun’s primary research focus has been on the behavior of metallic glasses and high-entropy alloys under extreme conditions, such as synchrotron radiation and ion beam irradiation. His work contributes significantly to the understanding of the structural evolution and deformation mechanisms of these materials, both in laboratory and real-world applications. By exploring the ways metallic glasses respond to high-energy environments, Dr. Sun is providing invaluable insights into improving material performance for industrial applications, particularly in areas requiring durability under radiation. His research on the microstructure control and damage mechanisms of metallic glasses has implications in fields ranging from aerospace to energy.

Conference Presentations & Academic Outreach 📢

Dr. Sun has actively shared his findings at prominent international conferences, reflecting his role as a thought leader in the materials science community. Notable presentations include those at the MSE2024 Congress in Germany, the 9th International Discussion Meeting on Relaxation in Complex Systems in Japan, and the 18th Materials Science & Technology conference in Ohio, USA. His work has been showcased in various formats, from oral presentations to poster sessions, enabling him to contribute to the global conversation on metallic glass and HEA research. These appearances underline his dedication to scientific dialogue and collaborative innovation.

Funding & Grants 💰

Dr. Sun’s research has attracted significant funding, further validating his research’s potential to contribute meaningfully to the field. He has secured grants from prestigious institutions, such as the Open Project of Songshan Lake Laboratory, focusing on microstructure control and damage mechanisms in metallic glasses using light ion beam irradiation. His work is also supported by the National Natural Science Foundation of China Youth Fund, which backs research into radiation-induced structural evolution in metallic glasses. Dr. Sun’s ability to secure and manage these competitive grants demonstrates his research’s value and potential impact on both academic and industrial domains.

Technical Skills & Expertise 🛠️

Dr. Sun has mastered several technical skills that form the cornerstone of his research. His expertise in synchrotron radiation techniques, high-energy ion beam irradiation, and solidification processes in metallic glasses is a testament to his proficiency in experimental material science. Additionally, his ability to work with complex materials like metallic glasses and HEAs showcases his technical versatility. These skills have allowed him to develop innovative experimental setups and methodologies to study these materials under unique conditions, advancing the understanding of their behaviors and performance.

Teaching Experience 🏫

his academic roles, Dr. Sun has also been an educator, contributing to the academic development of future materials scientists. At Shanghai University, he has taught graduate-level courses and supervised Ph.D. students in their research. His mentorship extends beyond teaching theoretical concepts; he provides hands-on experience in experimental research and fosters an environment of critical thinking and innovation. Through his teaching, Dr. Sun is shaping the next generation of scientists and engineers, passing on his expertise in advanced material characterization techniques and cutting-edge research methodologies.

Legacy & Future Contributions 🔮

Dr. Sun’s contributions to the field of materials science, particularly in metallic glasses and HEAs, have already left a lasting impact. As his research evolves, he is poised to make even more significant contributions, particularly in the areas of radiation-resistant materials and their applications in critical industries such as nuclear energy and aerospace. His future work will likely focus on deepening the understanding of the irradiation effects on these materials and finding solutions to enhance their performance. As he continues his research, his legacy as a key figure in the field of advanced materials will undoubtedly grow, influencing both academic inquiry and industrial innovation.

Top Noted Publications 📖

Title: Substantially improved room-temperature tensile ductility in lightweight refractory Ti-V-Zr-Nb medium entropy alloys by tuning Ti and V content

Authors: Jia, Y., Li, G., Ren, C., Wang, G.

Journal: Journal of Materials Science and Technology

Year: 2025

Volume: 206

Pages: 234–247

Title: Accelerated discovery of Magnesium-based amorphous alloys through a property-driven active learning strategy
  • Authors: Ma, W., Liu, B., Lu, T., Sun, K., Zhang, A.
  • Journal: Journal of Materials Research and Technology
  • Year: 2024
  • Volume: 32
  • Pages: 4316–4322
Title: Microstructural stability and mechanical property of AlCrFeMoTi high-entropy amorphous alloy thin films under He+ ions irradiation
  • Authors: Ali, S., Ahmed, M., Liu, B., Jia, Y., Wang, G.
  • Journal: Surface and Coatings Technology
  • Year: 2024
  • Volume: 487
  • Pages: 130952
Title: Improved piezoelectric and luminescent properties in Sm-modified Bi0.5Na0.5TiO3–BaTiO3 multifunctional ceramics
  • Authors: Cheng, S., Zhang, K., Li, C., Rao, G., Shi, S.
  • Journal: Journal of Materiomics
  • Year: 2024
  • Volume: 10(4)
  • Pages: 803–810
Title: Effect of aging on corrosion resistance of (FeCoNi)86Al7Ti7 high entropy alloys
  • Authors: Wang, Y., Li, G., Li, H., Jia, Y., Wang, G.
  • Journal: Corrosion Science
  • Year: 2024
  • Volume: 227
  • Pages: 111717

Timo Björk |Mechanical & Civil Engineering | Best Researcher Award

Prof. Timo Björk | Mechanical & Civil Engineering | Best Researcher Award

Professor at Lahti University of Technology, Finland

 Profile

Scopus Profile

🌟 Academic Background

Timo Juhani Björk is a renowned Professor of Steel Structures at Lappeenranta-Lahti University of Technology (LUT), Finland. With a career spanning over three decades, his groundbreaking research and leadership in steel structures and welding have made significant contributions to the field. His expertise has been recognized through numerous awards and research projects.

🎓 Education

Timo Björk earned his Doctor of Science (Technology) in Steel Structures from Lappeenranta University of Technology (LUT), Finland, on December 30, 2005. He completed his Master of Science (Technology) in Steel Structures at LUT on September 24, 1980. Additionally, he achieved the International Welding Engineer (IWE) qualification from the Finnish Welding Society on March 10, 1995.

💼 Professional Experience

Timo Juhani Björk has a distinguished career in steel structures and engineering, marked by his current role as Professor of Steel Structures at Lappeenranta-Lahti University of Technology (LUT) since March 1, 2011. Prior to this, he served as Head of Steel Structures at LUT from 2008 to 2011, where he led significant research and development initiatives. His career at LUT began with roles as Project Manager (2000-2006), Project Coordinator (2006-2008), and Senior Design Engineer (1996-2000). Earlier in his career, Timo was a Senior Research Scientist (1986-1989) and Research Scientist (1983-1984) at LUT, where he contributed to pivotal research projects. He also gained valuable experience as a Design Engineer at Projekti-insinöörit Oy and fulfilled military service with the Finnish Air Forces from 1980-1981. His extensive experience underscores his leadership and expertise in steel structures and engineering.

🔬 Research Interests

Timo Juhani Björk’s research interests are deeply rooted in advancing the field of steel structures and welding technology. His work encompasses the mechanical performance of welded materials, focusing on innovations in aluminum and other metals. He is also dedicated to carbon-neutral ship structures, aiming to develop lightweight and sustainable designs. Timo explores fossil-free steels and their applications to enhance environmental sustainability. His research extends to fatigue analysis of components produced through additive manufacturing and the impact of hydrogen on steel structures. Additionally, he is involved in digital and real-time monitoring, working on cutting-edge methods for digital design, simulation, and fatigue monitoring systems. Timo’s research aims to address critical challenges in the steel industry and promote advancements in structural integrity and sustainability.

🏆 Key Achievements

Timo Juhani Björk has made significant contributions to the field of steel structures and welding through several key achievements. He developed innovative methods such as the AGIFAP element method, the 4R fatigue concept, and the ReFaMo fatigue monitoring system, which have greatly advanced the study of material performance and structural integrity. Timo’s scholarly impact is highlighted by his 124 peer-reviewed publications and an h-index of 23, reflecting his influential research. His work earned him the Welding in the World Best Paper Award 2022 for a groundbreaking study on weld root fatigue strength assessment. Additionally, he holds a granted patent for “A system and a method for monitoring material fatigue” (EP4018171, 2023) and an invention disclosure for the “Efficiency Index of mechanical systems” (2023). These accomplishments underscore his leadership and innovation in the field.

📖 Publication

On the out-of-plane buckling of RHS X-joints – Analytical and numerical approaches

    • Authors: Björk, T., Ahola, A., Kukkonen, O.
    • Journal: Journal of Constructional Steel Research
    • Year: 2024

Fatigue design of stress relief grooves to prevent weld root fatigue in butt-welded cast steel to ultra-high-strength steel joints

    • Authors: Havia, J., Lipiäinen, K., Ahola, A., Björk, T.
    • Journal: Welding in the World
    • Year: 2024

Manufacturing and mechanical performance of a large-scale stainless steel vessel fabricated by wire-arc direct energy deposition

    • Authors: Lipiäinen, K., Afkhami, S., Lund, H., Skriko, T., Björk, T.
    • Journal: Materials and Design
    • Year: 2024

Assessing local stresses in scanned fillet weld geometry using bagged decision trees

    • Authors: Rohani Raftar, H., Ghanadi, M., Hultgren, G., Barsoum, Z., Björk, T.
    • Journal: Journal of Constructional Steel Research
    • Year: 2024

Fatigue enhancement of welded thin-walled tubular joints made of lean duplex steel

    • Authors: Ahola, A., Savolainen, J., Brask, L., Björk, T.
    • Journal: Journal of Constructional Steel Research
    • Year: 2024

Comparison of analytical and numerical methods for estimating notch strains | Vergleich von analytischen und numerischen Verfahren zur Abschätzung von Kerbdehnungen

    • Authors: Yanchukovich, A., Ahola, A., Björk, T., Sonsino, C.M.
    • Journal: Materialwissenschaft und Werkstofftechnik
    • Year: 2024

Zhengyi FU | Structural Engineering | Best Researcher Award

Mr. Zhengyi FU, Structural Engineering, Best Researcher Award

Mr. Zhengyi FU at city university of Hong Kong, Hong Kong

Professional Profile

Scopus Profile
Google Scholar Profile

🌟Summary

Fu Zhengyi is a dedicated researcher in the field of structural engineering, currently pursuing his Ph.D. at City University of Hong Kong under the supervision of Prof. Lam Heung Fai. With a strong academic background including a Master’s from Central South University and a Bachelor’s from Nanchang University, his research focuses on modal identification, modal updating, damage detection, response reconstruction, and the application of artificial intelligence in structural dynamics. Fu Zhengyi’s work, highlighted by publications in renowned journals and participation in significant research projects, aims to innovate methodologies that enhance the reliability and efficiency of structural assessment practices. His career aspirations include contributing to the advancement of structural health monitoring technologies to ensure the resilience and safety of civil infrastructure.

🎓 Education

Fu Zhengyi completed his Ph.D. in Structural Engineering at City University of Hong Kong under the supervision of Prof. Lam Heung Fai. Prior to this, he obtained a Master’s degree from Central South University and a Bachelor’s degree from Nanchang University. His academic journey has been marked by a strong foundation in engineering principles and a specialization in structural dynamics and modal analysis. Throughout his education, Fu Zhengyi has demonstrated a commitment to excellence, earning distinctions such as a National Scholarship during his Master’s studies and multiple scholarships for outstanding academic performance during his Bachelor’s degree. His research interests include modal identification, modal updating, damage detection, response reconstruction, and the application of artificial intelligence in enhancing structural assessment methodologies.

💼 Professional Experience

Fu Zhengyi has accumulated extensive experience in the field of structural engineering, focusing primarily on modal identification, modal updating, damage detection, response reconstruction, and the application of artificial intelligence in structural dynamics. His research has been published in reputable journals such as Engineering Structures and Mechanical Systems & Signal Processing. During his doctoral studies at City University of Hong Kong, under the guidance of Prof. Lam Heung Fai, Fu Zhengyi developed expertise in dynamic response reconstruction methodologies and Bayesian modal analysis. His contributions extend to practical applications, including participation in research projects such as the topographic wind parameter test of Nujiang Bridge and the excitation and vibration measurement experiment on Hongyan Village Bridge. Fu Zhengyi’s professional journey underscores a commitment to advancing the understanding and management of structural behavior through innovative research and practical experimentation.

🔬 Research Interests

Fu Zhengyi’s research interests span a diverse array of topics within structural engineering, with a particular emphasis on modal identification, modal updating, damage detection, response reconstruction, and the integration of artificial intelligence techniques. His work aims to advance the understanding and application of modal analysis methods to enhance the reliability and efficiency of structural assessment and maintenance practices. Fu Zhengyi is particularly passionate about developing innovative approaches that leverage Bayesian methodologies for modal analysis and exploring the potential of artificial intelligence algorithms to optimize response reconstruction and damage detection processes. His research contributions aim to address current challenges in structural health monitoring and contribute to the resilience and longevity of civil infrastructure.

📖 Publication Top Noted

Article: A response reconstruction method based on empirical mode decomposition and modal synthesis method

  • Authors: Jinsong Yang, Zhengyi Fu, Yunfeng Zou, Xuhui He, Xiaojun Wei, Tiantian Wang

  • Journal: Mechanical Systems and Signal Processing

  • Year: 2023

  • Citation: 16

Article: An efficient dynamic response reconstruction methodology based on model condensation and modal decomposition

  • Authors: Zheng Yi Fu, Mujib Olamide Adeagbo, Heung Fai Lam

  • Journal: International Journal of Structural Stability and Dynamics

  • Year: 2023

  • Citation: 3

Article: Dynamic Response Reconstruction Method Based on Empirical Mode Decomposition and Model Condensation

  • Authors: ZOU Yun-feng, FU Zheng-yi, HE Xu-hui, LU Xuan-dong, YANG Jin-song, ZHOU Shuai

  • Year: 2021

  • Citation: 3

Article: Time-domain structural model updating following the Bayesian approach in the absence of system input information

  • Authors: Heung Fai Lam, Fu Zheng Yi, Mujib Olamide Adeagbo, Jia Hua Yang

  • Journal: Engineering structures

  • Year: 2024

Article: A new time-domain dynamic response reconstruction method based on model condensation

  • Authors: ZY FU, HF LAM

  • Journal: The 26th Annual Conference of HKSTAM 2023 The 18th Shanghai–Hong Kong Forum on Mechanics and Its Application

  • Year: 2023

Huixing Li | Materials Engineering | Best Researcher Award

Dr. Huixing Li , Materials Engineering, Best Researcher Award

Doctorate at Electronic Science and Technology of China,Shenzhen Institute for Advanced Study, China

Summary:

Dr. Huixing Li is a dedicated researcher in the field of materials engineering with a focus on hydrogen embrittlement and additive manufacturing. With a background spanning academia and industry, Dr. Li has made significant contributions to understanding the complexities of hydrogen’s effects on material properties and developing tailored solutions for engineering applications.

👩‍🎓Education:

  • Ph.D. in Materials Engineering, The University of Queensland, Australia, 2018-2022
  • M.Sc. in Materials Science, Northeastern Petroleum University, China, 2012-2015
  • B.Eng. in Metallic Materials Engineering, Northeastern Petroleum University, China, 2008-2012

Professional Experience:

  • Research Fellow, University of Electronic Science and Technology of China (UESTC), Shenzhen Institute for Advanced Study, 2024-present
  • Research Officer, Postdoctoral Research Fellow, Adjunct Fellow, The University of Queensland, Australia, 2022-2024
  • Research & Teaching Assistant, Southern University of Science and Technology (SUSTech), China, 2015-2018
  • Tutor of Powder Metallurgy and 3D Printing, SUSTech, China, 2016-2017

Research Interest :

Dr. Huixing Li’s research interests encompass a comprehensive exploration of materials engineering, with a particular emphasis on hydrogen embrittlement and additive manufacturing. His work delves into the intricate mechanisms underlying hydrogen’s impact on material properties, especially in steels utilized for automotive lightweighting. Dr. Li is dedicated to developing a nuanced understanding of hydrogen solubility, diffusion, and trapping in metals, which is crucial for enhancing the durability and performance of engineering components. Additionally, his research extends to the optimization of additive manufacturing processes, aiming to produce dense engineering parts with tailored properties for various industrial applications. Through his multidisciplinary approach, Dr. Li strives to contribute valuable insights to the advancement of materials science and engineering.

Publication Top Noted: