Neha Choudhary | Environmental Data Analysis | Women Researcher Award

Dr. Neha Choudhary | Environmental Data Analysis | Women Researcher Award

Sorbonne Université | France

Dr. Neha Choudhary is a postdoctoral researcher at Institut Jean Le Rond d’Alembert, Sorbonne Université, France, with expertise in materials and inorganic chemistry, particularly in the development of nanomaterials and single-atom catalysts. Her work focuses on designing sustainable catalytic systems for environmentally benign organic transformations and CO₂ conversion into valuable chemicals. With a strong foundation in catalysis and nanotechnology, Dr. Choudhary has contributed significantly to advancing green chemistry and renewable energy solutions through innovative research and international collaborations.

Professional Profile

Google Scholar

Education

Dr. Choudhary earned her Ph.D. in Chemistry from the Indian Institute of Technology Indore, where she conducted extensive research on the design and synthesis of bimetallic catalysts for environmentally friendly organic transformations. She also holds a Master of Science in Chemistry from the School of Chemical Sciences, DAVV, Indore, and a Bachelor of Science with a focus on Physics, Chemistry, and Mathematics from Govt. Holkar Science College, Indore. Her strong academic background is further supported by her qualification in competitive national-level examinations, which strengthened her expertise in catalysis and materials chemistry.

Experience

Dr. Choudhary has extensive experience in academia and research, beginning as a guest faculty member in chemistry at Govt. Polytechnic College, Dewas, where she also taught environmental chemistry and mentored students. She further advanced her research expertise as a Research Associate under a DAE-BRNS scheme at IIT Indore, focusing on catalytic applications of nanocatalysts derived from single-source molecular precursors. Currently, as a Postdoctoral Fellow at Sorbonne Université under the PEPR PowerCO₂ Scheme, she designs and synthesizes three-dimensional structured materials and single-atom catalysts for the conversion of CO₂ into methane and methanol. Her work integrates advanced catalytic materials with renewable energy applications, contributing to global sustainability goals.

Research Interest

Her research interests lie in heterogeneous catalysis, nanomaterials, single-atom catalysts, CO₂ hydrogenation, biomass conversion, and sustainable energy solutions. She specializes in the development of bimetallic and single-atom catalysts for environmentally benign transformations, with a strong emphasis on recyclability, robustness, and cost-effectiveness. Dr. Choudhary’s research also explores electrochemical performance of nanostructured materials for energy storage and CO₂ fixation, bridging the gap between catalysis, green chemistry, and sustainable development.

Awards and Achievements

Dr. Choudhary has actively contributed to numerous international and national conferences, including the European Materials Research Society Fall Meeting, International Conference on Environmental Catalysis, and ICANN conferences. She has presented her research through oral talks and posters in globally recognized events such as the Commonwealth Chemistry Poster Competition and RSC Twitter Poster Conference. She has completed several certified courses from reputed international institutions on nanotechnology, molecular spectroscopy, and nanosensors. Her academic journey is marked by active participation in workshops, webinars, and research symposia focusing on catalysis, renewable energy, and sustainable chemistry. Beyond her academic achievements, she holds accolades in extracurricular activities, including martial arts and cultural events, demonstrating a well-rounded professional profile.

Publications

Chandra, P., Choudhary, N., Lahiri, G.K., Maiti, D., Mobin, S.M. (2021). “Copper Mediated Chemo‐ and Stereoselective Cyanation Reactions.” Asian Journal of Organic Chemistry, 10(8), 1897–1937.

Singh, A., Choudhary, N., Mobin, S.M., Mathur, P. (2021). “Cubane Ru₄(CO)₈ Cluster Containing 4 Pyridine-Methanol Ligands as a Highly Efficient Photoelectrocatalyst for Oxygen Evolution Reaction from Water.” Journal of Organometallic Chemistry, 940, 121769.

Ghosh, T., Choudhary, N., Mobin, S.M. (2020). “Design and Synthesis of Silver Decorated Fe₃O₄@Fe Doped CeO₂ Core‐Shell Ternary Composite as Highly Efficient Nanocatalyst for Selective Oxidation of ….” ChemistrySelect, 5(31), 9601–9606.

Choudhary, N., Parsai, P., Shaikh, M.M. (2024). “3d Transition Metal-Based Single-Atom Catalyst as an Emerging Field for Environmentally Benign Organic Transformation Reactions.” Molecular Catalysis, 565, 114360.

Choudhary, N., Hussain, N., Mobin, S.M. (2023). “Insights on Effect of Different Electrolytes on Electrochemical Performance of CoNi Nanoflower‐Based Supercapacitors.” Energy Technology, 11(10), 2300521.

Choudhary, N., Srivastava, N., Annadata, H.V., Ghosh, B., Da Costa, P. (2025). “The Dual‐Active‐Site Catalysts Containing Atomically Dispersed Pr³⁺ with Ni/CeO₂ for CO₂ Hydrogenation to Methane.” Small, 2504707.

Conclusion

Dr. Neha Choudhary exemplifies a dynamic researcher with a deep commitment to advancing the field of materials and inorganic chemistry through innovative catalysis and nanotechnology. Her contributions toward sustainable CO₂ conversion and green chemical processes align with global environmental objectives. With an extensive publication record in high-impact journals and a strong network of international collaborations, she continues to pioneer advancements in catalytic science for cleaner and greener chemical processes. Her vision includes fostering innovation in renewable energy catalysis, mentoring emerging researchers, and bridging the gap between academic research and industrial application to promote a more sustainable future.

Mazhar Ahmed Memon | CO2 Reduction | Best Researcher Award

Dr. Mazhar Ahmed Memon | CO2 Reduction | Best Researcher Award

Dr. Mazhar Ahmed Memon | CO2 Reduction – Tianjin University | China

Dr. Mazhar Ahmed Memon is a dynamic and driven researcher in the field of Chemical Engineering, with a focused specialization in catalysis for carbon dioxide (CO₂) conversion into sustainable fuels. Backed by over eight years of engineering and research experience, he has cultivated a profound understanding of catalyst synthesis, surface characterization, and process optimization. His ongoing Ph.D. research at Tianjin University, China, is centered on the effect of dopants on Ni/ZrO₂-based catalysts for CO₂ methanation, positioning him at the forefront of environmentally conscious energy innovation. As the founder and team leader of DCUBE Engineering Solutions, Dr. Memon blends technical prowess with entrepreneurial spirit, leading projects with a strategic vision for sustainability and innovation.

Professional Profile

SCOPUS | ORCID | GOOGLE SCHOLAR

Education

Dr. Memon holds a Ph.D. in Chemical Engineering from Tianjin University, where his research contributes to global carbon mitigation strategies through advanced catalytic processes. His doctoral work investigates the role of dopants in enhancing Ni/ZrO₂-based catalysts for CO₂ methanation. He previously earned a Master of Engineering in Petroleum Engineering (2019) and a Bachelor of Engineering in Petroleum & Natural Gas Engineering (2016), both from Mehran University of Engineering and Technology, Pakistan. His academic journey is marked by government-sponsored scholarships and a consistent focus on energy production optimization, laying a strong foundation for his research trajectory.

Experience

Dr. Memon’s career spans roles in academia, research, and industry. Since 2020, he has led DCUBE Engineering Solutions, a company dedicated to energy and infrastructure services, where he manages strategic growth, resource allocation, and project development. Prior to this, he served as Project Engineer and Assistant to the Chief Operating Officer at A.U Engineering Construction & Pvt. Limited (2016–2019), gaining critical experience in project execution, compliance audits, and pipeline construction methods. His blend of hands-on engineering, leadership, and business acumen equips him to drive impactful, multidisciplinary initiatives in research and development sectors.

Research Interests

His research interests lie at the intersection of catalysis, environmental engineering, and sustainable energy. He focuses on CO₂ methanation, catalyst development and modification, and the application of advanced materials such as perovskites for enhanced catalytic activity. Dr. Memon is skilled in material characterization techniques including HR-TEM, XPS, XRD, BET, and TGA. His broader aim is to contribute to the advancement of carbon capture, utilization, and storage (CCUS) technologies, thereby addressing critical challenges in climate change and renewable energy systems.

Awards & Recognitions

Dr. Memon’s academic and research excellence has earned him several accolades. He received a prestigious Ph.D. scholarship from the Chinese Scholarship Council (CSC) and a Federal Government Scholarship for his master’s studies, both testaments to his scholarly promise. During his undergraduate studies, he was awarded a laptop by the Prime Minister of Pakistan for his outstanding performance. He has also been acknowledged by the Society of Petroleum Engineers (SPE) International for his volunteer contributions and served as a student chapter representative at the PAPG-SPE Technical Conference. Additionally, he has presented innovative CO₂ modeling tools and gas-lift optimization systems in academic competitions.

Publications

Heterogeneous Catalysts for Carbon Dioxide Methanation: A View on Catalytic Performance
  • Authors: YL Mazhar Ahmed Memon, Yanan Jiang, Muhammad Azher Hassan, Muhammad Ajmal, …

  • Journal: Catalysts

  • Year: 2023

Ni–CaZrO₃ with perovskite phase loaded on ZrO₂ for CO₂ methanation
  • Authors: MA Memon, W Zhou, M Ajmal, Y Jiang, C Zhang, J Zhang, Y Liu

  • Journal: International Journal of Hydrogen Energy, Vol. 92, pp. 1202–1213

  • Year: 2024

Active pairs of Cu⁰/Cu⁺ for CO₂ hydrogenation
  • Authors: W Zhou, MA Memon, M Niu, X Fan, Y Jiang, X Zhang, Y Liu

  • Journal: International Journal of Hydrogen Energy, Vol. 104, pp. 49–58

  • Year: 2025

Ligand-regulated Ni-based coordination compounds to promote self-reconstruction for improved oxygen evolution reaction
  • Authors: M Ajmal, X Guo, MA Memon, M Asim, C Shi, R Gao, L Pan, X Zhang, …

  • Journal: Journal of Materials Chemistry A, Vol. 12 (29), pp. 18294–18303

  • Year: 2024

Catalyst breakthroughs in methane dry reforming: Employing machine learning for future advancements
  • Authors: S Ameen, MU Farooq, S Umer, A Abrar, S Hussnain, F Saeed, MA Memon, …

  • Journal: International Journal of Hydrogen Energy

  • Year: 2024

Understanding the Well Control Procedures for optimizing the Well Control System during Drilling
  • Authors: GZB Muhammad Arsalan Sultan, Mazhar Ahmed, Muzamil Ali

  • Journal: American Journal of Computing and Engineering, Vol. 5 (2), pp. 24–38

  • Year: 2022