Aditta Chowdhury | IoT (Internet of Things) Analytics | Research Excellence Award

Mr. Aditta Chowdhury | IoT (Internet of Things) Analytics | Research Excellence Award

Chittagong University of Engineering and Technology | Bangladesh

Aditta Chowdhury is an electrical and electronic engineering researcher and academic whose work focuses on advancing biomedical signal processing, embedded systems, and sustainable energy technologies. He holds both a Bachelor of Science and a Master of Science in Electrical and Electronic Engineering from the Chittagong University of Engineering and Technology, graduating with top academic distinction. His professional journey includes teaching and research roles in reputed engineering institutions, where he has contributed to curriculum development, laboratory instruction, and collaborative research. His research experience spans FPGA-based biomedical signal processing, photoplethysmogram-driven cardiovascular and metabolic disease detection, multimodal physiological signal analysis, plasmonic biosensing, microgrid feasibility assessment, and low-power VLSI system design. He has published extensively in high-impact journals and international conferences, demonstrating expertise in hardware–software co-design, machine learning applications in healthcare, and emerging sensor technologies. His work has resulted in several innovative solutions, including cardiovascular disease classifiers, hypertension detection systems, EOG-based eye-movement processors, and microgrid sustainability assessments. He has received multiple academic scholarships and awards recognizing his exceptional academic performance and research accomplishments. Driven by a commitment to impactful scientific contribution, he aims to continue developing intelligent, efficient, and accessible engineering solutions through interdisciplinary research and innovation.

Profile : Google Scholar

Featured Publications

Chowdhury, A., Das, D., Eldaly, A.B.M., Cheung, R.C.C., & Chowdhury, M.H. (2024). “Photoplethysmogram-based heart rate and blood pressure estimation with hypertension classification.” IPEM–Translation, 100024.

Joy, J.D., Rahman, M.S., Rahad, R., Chowdhury, A., & Chowdhury, M.H. (2024). “A novel and effective oxidation-resistant approach in plasmonic MIM biosensors for real-time detection of urea and glucose in urine for monitoring diabetic and kidney disease.” Optics Communications, 573, 131012.

Chowdhury, A., Das, D., Hasan, K., Cheung, R.C.C., & Chowdhury, M.H. (2023). “An FPGA implementation of multiclass disease detection from PPG.”
IEEE Sensors Letters, 7(11), 1–4.

Islam, M.A., Chowdhury, A., Jahan, I., & Farrok, O. (2024). “Mitigation of environmental impacts and challenges during hydrogen production.”
Bioresource Technology, 131666.

Chowdhury, A., Das, D., Cheung, R.C.C., & Chowdhury, M.H. (2023). “Hardware/software co-design of an ECG–PPG preprocessor: A qualitative and quantitative analysis.”
Proceedings of the 2023 International Conference on Electrical, Computer and Communication Engineering, 9.

Abdelouahad Achmamad | Engineering | Best Researcher Award

Dr. Abdelouahad Achmamad | Engineering | Best Researcher Award

Universite De Mans | France

Dr. Abde Louahad Achmamad is an embedded software engineer and researcher specializing in intelligent systems, AI algorithms, biomedical signal processing, and advanced embedded technologies for electrical, biomedical, and IoT applications. He holds a PhD in Electrical Engineering, complemented by master’s degrees in biomedical engineering and electrical/electronic engineering, supported by earlier qualifications in electromechanics and electronics. His professional experience spans biomedical R&D, embedded system design, AI-based medical diagnostics, MRI segmentation, IoT health monitoring, wearable sensor development, and security applications for STM32 microcontrollers. He has worked with leading institutions and companies across France and Morocco, including STMicroelectronics, Akkodis, Diabtech, Université de Rouen, ENSIAS, and multiple research laboratories. His scientific output includes 102 citations by 95 documents, 16 publications, and an h-index of 6, reflecting contributions in EMG-based diagnostics, phonoangiography, neuromuscular disorder detection, sensor fusion, and few-shot learning for medical imaging. He has also reviewed more than 200 scientific manuscripts for major journals from Springer, Elsevier, and MDPI, demonstrating recognized expertise in signal processing and embedded systems. His research interests include embedded AI, biomedical instrumentation, wearable sensors, IoT-based healthcare, security-focused embedded design, and intelligent diagnostic systems. Dr. Achmamad remains dedicated to advancing high-impact engineering solutions that enhance healthcare, sensing technologies, and intelligent embedded platforms.

Profiles : Scopus | Orcid | Google Scholar

Featured Publications

Achmamad, A., & Jbari, A. (2020). A comparative study of wavelet families for electromyography signal classification based on discrete wavelet transform. Bulletin of Electrical Engineering and Informatics.

Achmamad, A., Belkhou, A., & Jbari, A. (2020). Fast automatic detection of amyotrophic lateral sclerosis disease based on Euclidean distance metric. In 2020 International Conference on Electrical and Information Technologies .

Belkhou, A., Achmamad, A., & Jbari, A. (2019). Classification and diagnosis of myopathy EMG signals using the continuous wavelet transform. In 2019 Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science .

Belkhou, A., Achmamad, A., & Jbari, A. (2019). Myopathy detection and classification based on the continuous wavelet transform. Journal of Communications Software and Systems.

Abdelouahad, A., Belkhou, A., Jbari, A., & Bellarbi, L. (2018). Time and frequency parameters of sEMG signal–force relationship. In 2018 International Conference on Optimization and Applications .