Shaymaa Sorour | Artificial Intelligence | Best Researcher Award

Dr. Shaymaa Sorour | Artificial Intelligence | Best Researcher Award

King Faisal University | Saudi Arabia

Dr. Shaymaa E. Sorour is an Assistant Professor of Computer Science specializing in Artificial Intelligence, Machine Learning, Deep Learning, and Optimization, with a strong focus on educational technologies and intelligent learning systems. She earned her Ph.D. in Computer Science from Kyushu University, Japan (2016), following an M.Sc. in Computer Education and a B.Sc. in Computer Teacher Preparation with honors. Dr. Sorour has extensive academic experience across teaching, research, quality assurance, and academic advising, serving in faculty roles at King Faisal University, Saudi Arabia, and Kafrelsheikh University, Egypt. Her research integrates data mining, learning analytics, student performance prediction, adaptive and intelligent educational systems, and technology-enhanced learning, with publications in leading international journals and conferences. She has actively contributed to global scholarly communities through sustained participation in IEEE, LNCS, and international education and AI venues. Her scholarly impact includes 486 citations, 49 documents, and an h-index of 11, reflecting consistent contributions to AI in education and learning analytics (486 citations by 441 documents). Among her recognitions, she received a Best Paper Award at an international conference. Dr. Sorour’s work continues to bridge advanced computational intelligence with practical, scalable educational innovation, supporting data-driven decision-making and improved learning outcomes worldwide.

Citation Metrics (Scopus)

800
600
400
200
0

Citations
486

Documents
49

h-index
11

Citations

Documents

h-index



View Scopus Profile

View Orcid Profile

View Google Scholar Profile

Featured Publications

Modafar Ati | Machine Learning and AI Applications | Best Researcher Award

Assoc. Prof. Dr. Modafar Ati | Machine Learning and AI Applications | Best Researcher Award

Abu Dhabi University | United Arab Emirates

Assoc. Prof. Dr. Modafar Ati is an accomplished academic and researcher in Computer Science and Information Technology with extensive experience in teaching, curriculum development, and leadership. He holds a BSc in Electrical & Communication Engineering and a PhD in Electrical & Computing Engineering from Newcastle upon Tyne, UK. Dr. Ati has over three decades of experience in both academia and industry, serving in senior roles including Associate Professor at Abu Dhabi University, Acting Dean at Sohar University, and Assistant Dean at multiple institutions in Oman. His professional expertise spans software development, systems integration, networking, ICT, project management, Service-Oriented Architecture (SOA), Artificial Intelligence, Big Data, Cybersecurity, and eHealth smart systems. He has published numerous research articles focusing on AI-driven Chronic Disease Management and smart healthcare systems and has led research groups in eGovernment and ICT. Dr. Ati has received multiple grants and awards, including the Chancellor Innovation Award, and serves on editorial boards and as a senior reviewer for international journals and conferences. His teaching portfolio covers programming, network security, project management, human-computer interaction, and mobile application development. Dr. Ati’s contributions to education, research, and innovation reflect a strong commitment to advancing technology-driven solutions in healthcare, smart cities, and digital systems.

Profile : Google Scholar

Featured Publications

Hussein, A. S., Omar, W. M., Li, X., & Ati, M. (2012). “Efficient chronic disease diagnosis prediction and recommendation system” in 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, 209–214.

Mohamed, O., Kewalramani, M., Ati, M., & Al Hawat, W. (2021). “Application of ANN for prediction of chloride penetration resistance and concrete compressive strength” in Materialia, 17, 101123.

Mohamed, O. A., Ati, M., & Najm, O. F. (2017). “Predicting compressive strength of sustainable self-consolidating concrete using random forest” in Key Engineering Materials, 744, 141–145.

Hussein, A. S., Omar, W. M., Li, X., & Ati, M. (2012). “Accurate and reliable recommender system for chronic disease diagnosis” in Global Health, 3(2), 113–118.

Ati, M., Kabir, K., Abdullahi, H., & Ahmed, M. (2018). “Augmented reality enhanced computer aided learning for young children” in 2018 IEEE Symposium on Computer Applications & Industrial Electronics.