Jiabao Li | Engineering | Research Excellence Award

Mr. Jiabao Li | Engineering | Research Excellence Award

Yangzhou University | China

Mr. Jiabao Li is a materials scientist and electrochemical energy researcher specializing in sodium-ion batteries and capacitive deionization, with particular focus on electrode and electrolyte design for extreme temperature environments. He earned his bachelor’s and master’s degrees in applied chemistry from Anhui Agricultural University, followed by a Ph.D. in materials and optoelectronics from East China Normal University, including a joint research period at the Georgia Institute of Technology. Since completing his doctoral work, he has served as a lecturer and researcher, leading multiple competitive research projects in materials innovation and energy-storage systems. His work integrates experimental synthesis with computational tools such as DFT modeling and molecular dynamics simulations to advance high-performance sodium-ion storage materials. He has published 98 scientific documents, accumulating 5,410 citations across 4,235 referencing documents, with an h-index of 40, reflecting significant global impact in the fields of battery chemistry and electrochemical engineering. His awards include national and institutional scholarships that recognize excellence in scientific research and academic achievement. Overall, his career demonstrates sustained contributions to next-generation energy-storage technologies and the advancement of robust sodium-ion systems for low-temperature and high-efficiency applications.

Profile : Scopus

Featured Publications

Unveiling the neglected role of oxygen doping in nitrogen-doped carbon for enhanced capacitive deionization performance. Nature Communications, 2025.

Rapidly evaluating electrochemical performance of transition metal disulfides for lithium-ion batteries using machine learning classifier. Chemical Engineering Journal, 2025.

Ionic conductor-armored Li₃V₂(PO₄)₃: a robust electrode for lithium capture via capacitive desalination. Chemical Communications, 2025.

Anion screening in ether-based electrolytes for boosted sodium storage at low temperature. Energy Storage Materials, 2025.

Coordination-tuned Na₃V₂(PO₄)₃ cathodes for low-temperature sodium-ion batteries. Chemical Communications, 2025.

 

zhanpeng qin – Electrochemical energy storage – Best Researcher Award

Mr. zhanpeng qin - Electrochemical energy storage - Best Researcher Award

Tsinghua university - China

Author Profile

Early Academic Pursuits

Mr. Zhanpeng Qin's academic journey commenced with a robust foundation laid during his undergraduate years at Hohai University. There, he delved into a diverse array of subjects encompassing mechanical principles, engineering materials, and electronics, among others. This multidisciplinary approach not only broadened his knowledge base but also nurtured his innate curiosity for exploring the intersections of various fields. It was during this formative period that Qin's passion for research began to take shape, propelling him towards his current trajectory in academia.

Professional Endeavors

Upon embarking on his master's journey at Tsinghua University, Qin's academic pursuits evolved to encompass the realms of Intelligent Manufacturing. His transition to Tsinghua marked a pivotal moment in his career, where he was exposed to cutting-edge research and state-of-the-art facilities. Under the mentorship of esteemed faculty members, he honed his skills in electrochemical energy storage and machine learning, areas that would later become the focal points of his research endeavors.

Contributions and Research Focus

Mr. Qin's research primarily revolves around the health state assessment of lithium-ion batteries, a critical area within the realm of electrochemical energy storage. His seminal work, published in the prestigious Journal of Power Sources, demonstrates a groundbreaking approach that combines partial Electrochemical Impedance Spectroscopy (EIS) with interpretable machine learning techniques. This innovative methodology not only enhances the accuracy and speed of battery health estimation but also contributes to advancing the practical applications of EIS technology.

Accolades and Recognition

Mr. Qin's contributions to the field have garnered widespread recognition, as evidenced by the publication of his research in high-impact journals. His work has not only been cited extensively but has also been lauded for its significance in advancing the frontiers of electrochemical energy storage and machine learning. Furthermore, his achievements have been acknowledged through various awards and accolades, further solidifying his status as a promising young researcher in the field.

Impact and Influence

Mr. Qin's research has had a profound impact on both academia and industry, offering novel solutions to pressing challenges in the realm of energy storage. By pushing the boundaries of conventional methodologies and embracing interdisciplinary approaches, he has paved the way for transformative advancements in battery health analysis. Moreover, his collaborative efforts with industry stakeholders have facilitated the translation of his research findings into real-world applications, thus bridging the gap between theory and practice.

Legacy and Future Contributions

As Qin continues to chart new territories in his academic journey, his legacy is poised to endure through the students he mentors and the research he inspires. His commitment to excellence and innovation serves as a beacon for future generations of researchers, encouraging them to push beyond conventional boundaries and explore new frontiers. Looking ahead, Qin remains steadfast in his dedication to advancing knowledge and driving positive change, thereby shaping the future landscape of electrochemical energy storage and beyond.

In summary, Zhanpeng Qin's journey from his early academic pursuits to his current standing as a respected researcher exemplifies a trajectory marked by dedication, innovation, and impact. His contributions to the field stand as a testament to the transformative power of interdisciplinary research and serve as inspiration for aspiring scientists worldwide.

Notable Publication