Abdul Hakeem Anwer | Environmental Data Analysis | Best Researcher Award

Dr. Abdul Hakeem Anwer | Environmental Data Analysis | Best Researcher Award

Qatar University | Qatar

Abdul Hakeem Anwer is a dedicated researcher in the fields of electrocatalytic reduction, nanomaterials, and sustainable energy systems. His career reflects a strong commitment to advancing scientific innovation, particularly in developing efficient solutions for carbon dioxide reduction, wastewater treatment, supercapacitors, and microbial fuel cells. With a proven record of research excellence and international collaboration, he has established himself as a promising scientist in chemistry and materials science.

Professional Profiles

Scopus
Orcid
Google Scholar

Education

He pursued his academic journey at Aligarh Muslim University, India, where he completed his Bachelor’s, Master’s, and Doctorate in Industrial Chemistry and Chemistry. His Ph.D. research focused on bioproduct formation using bioelectrochemical systems, laying the foundation for his later work on advanced nanomaterials and electrocatalysis. His academic training equipped him with strong experimental, analytical, and problem-solving skills to address pressing global challenges in energy and environmental sciences.

Experience

Abdul Hakeem has worked as a Postdoctoral Fellow at Qatar University, where his research centers on electrocatalytic CO2 reduction and advanced nanomaterials, alongside mentoring graduate students. Previously, he served at Yeungnam University, South Korea, collaborating with multidisciplinary teams to push forward energy and environmental projects. Before these international engagements, he contributed as a Senior Research Fellow at IIT Delhi and as a Research Assistant at AMU, where he worked on materials development for microbial fuel cells and energy storage applications. His early industrial experience as a chemist in a food products company gave him practical insights into applied chemistry and quality assessment, broadening his professional expertise.

Research Interests

His research spans electrocatalysis, advanced nanomaterials, CO2 reduction technologies, microbial fuel cells, photocatalysis, and supercapacitors. He is particularly focused on developing hybrid materials, metal-organic frameworks (MOFs), and nanostructures for energy harvesting, wastewater remediation, and pollutant degradation. His scientific contributions highlight innovative pathways to sustainable energy, environmental remediation, and the circular economy, aligning with global needs for clean technologies and green energy solutions.

Awards

Abdul Hakeem’s scientific excellence has been recognized through multiple awards and travel grants. He received support from the European Molecular Biology Laboratory (EMBL) to present at the Global CO2 Challenge in Germany and was granted the Trans-YTF fellowship by the Federation of European Biochemical Societies (FEBS) to participate in an advanced lecture course in Greece. Additionally, he secured a Council of Science and Technology fellowship in India, underscoring his contributions to funded research projects. His achievements reflect both his international standing and his ability to contribute meaningfully to collaborative scientific networks.

Publications

Mashkoor, F., Mashkoor, R., Shoeb, M., Anwer, A.H., Ansari, M.Z., & Jeong, C. (2023). A smart recycling solution: WS₂-halloysite nanocomposite for heavy metals remediation from wastewater and postliminar application in electrochemical supercapacitor for energy storage. Applied Clay Science.

Mahmoud, K.H., Alsubaie, A.S., Anwer, A.H., & Ansari, M.Z. (2023). Comparative Analysis of Perovskite Solar Cells for Obtaining a Higher Efficiency Using a Numerical Approach. Micromachines, 14(6), 1127.

Mashkoor, F., Mashkoor, R., Shoeb, M., Anwer, A.H., Jeong, H., & Jeong, C. (2023). Freestanding WS₂-MWCNT Nanocomposite for Electrochemical Detection of Contaminants of Emerging Concern—Perfluorooctanoic Acid “A Forever Chemical” and Supercapacitor Applications. ACS Sustainable Chemistry & Engineering, 11(32), 11842–11854.

Waris, Anwer, A.H., & Khan, M.Z. (2023). Graphene quantum dots for clean energy solutions. In Graphene Quantum Dots: Biomedical and Environmental Sustainability Applications (pp. 65–88). Elsevier.

Ahmad, N., Bano, D., Jabeen, S., Ahmad, N., Iqbal, A., Waris, Anwer, A.H., & Jeong, C. (2023). Insight into the adsorption thermodynamics, kinetics, and photocatalytic studies of polyaniline/SnS₂ nanocomposite for dye removal. Journal of Hazardous Materials Advances, 9, 100321.

Conclusion

Through his academic journey, international experience, and impactful research, Abdul Hakeem Anwer has emerged as a forward-looking scientist dedicated to solving complex challenges in energy and environmental chemistry. His work on nanomaterials, electrocatalysis, and bioelectrochemical systems continues to inspire sustainable innovation and global collaboration. With a growing portfolio of high-impact publications, book chapters, and a granted patent, he remains committed to advancing clean energy solutions and eco-efficient technologies for the future.

Jana Petrović | Materials in catalysis | Best Researcher Award

Ms. Jana Petrović | Materials in catalysis | Best Researcher Award

Innovation Centre of the Faculty of Technology and Metallurgy | Serbia

Jana Petrović is a dedicated researcher specializing in semiconductor materials and photocatalysis, with a strong focus on developing innovative materials for the photocatalytic reduction of hexavalent chromium under visible light irradiation. Her career reflects a continuous commitment to scientific excellence, innovation, and practical applications in environmental protection and advanced material science. She has contributed to research and development in the field of chemical engineering and material science, actively participating in cutting-edge projects and presenting promising outcomes for sustainable technological solutions.

Professional Profile

ORCID

Education

Jana pursued her academic journey at the University of Belgrade – Faculty of Technology and Metallurgy, where she successfully completed undergraduate and master’s studies in chemical engineering and is currently enrolled in doctoral academic studies. Her formal education provided her with an exceptional foundation in chemical engineering principles, materials science, and environmental technologies. Through rigorous academic training, she has developed extensive expertise in advanced research methodologies and analytical techniques that contribute to her innovative work in photocatalysis and semiconductor materials.

Experience

Her professional career began as a Young Research Intern, where she contributed to research projects focusing on material science and environmental applications. Currently, she holds the position of Research Assistant at the Innovation Center of the Faculty of Technology and Metallurgy, where she continues to expand her expertise in materials characterization and innovative photocatalytic technologies. Her role involves conducting experiments, analyzing materials through advanced characterization techniques such as FESEM microscopy, BET surface analysis, XRD and FTIR analysis, and UV-Vis spectroscopy, as well as contributing to collaborative research initiatives aimed at environmental sustainability.

Research Interest

Jana’s primary research interests lie in the field of semiconductor materials and photocatalysis, with a particular focus on materials designed for the photocatalytic reduction of hexavalent chromium under visible light irradiation. Her work addresses key environmental challenges by exploring sustainable and efficient ways to remove toxic pollutants from industrial wastewater. She is passionate about the development of new materials that harness visible light for effective photocatalytic reactions, contributing to cleaner technologies and innovative solutions in the field of environmental remediation.

Awards

Throughout her academic and research career, Jana has been recognized with multiple scholarships and awards for her outstanding achievements and contributions to science. She has received prestigious scholarships from national foundations supporting young researchers and talented students, as well as institutional recognition for her excellence in academic and research performance. These accolades reflect her dedication to advancing scientific knowledge and her potential to make a significant impact in the fields of chemical engineering and materials science.

Publications

Petrović, J., Radovanović, Ž., Obradović, B., Janaćković, Đ., Petrovic, R., et al. (2025). “Modification of surface properties and photocatalytic performance of pure and oxygen-doped graphitic carbon nitride via DBD plasma treatment” in Journal of the Serbian Chemical Society.

Petrović, J., Radovanović, Ž., Lazarević, S., Barać, N., Janaćković, Đ., Petrovic, R., et al. (2024). “Synthesis of photocatalysts for the reduction of hexavalent chromium by modification of TiO₂ with nanoparticles of Cu and/or CdS” in Tehnika.

Conclusion

Jana Petrović stands as a promising researcher whose work bridges the gap between innovative material science and environmental sustainability. Her dedication to research, coupled with her hands-on expertise in advanced materials characterization techniques, positions her as a valuable contributor to the scientific community. With a strong foundation in chemical engineering, a growing portfolio of research accomplishments, and a clear focus on solving critical environmental challenges, she continues to advance the field of photocatalysis and semiconductor materials, paving the way for sustainable technological advancements.