Mr. Helmi Ayari | Data processing | Research Excellence Award
Université Ibn khaldoun | Tunisia
Helmi Ayari is a doctoral researcher in Artificial Intelligence at the École Polytechnique de Tunisie, focusing on machine learning, deep learning, and intelligent imaging systems, with a research track record that includes 3 published documents, an h-index of 1, and citations from 33 documents. He holds a Master of Research in Intelligent Systems for Imaging and Computer Vision and a fundamental Bachelor’s degree in Computer Science. His work includes contributions to medical image analysis, explainable AI, and optimization techniques, with notable publications such as a comparative study of classical versus deep learning-based computer-aided diagnosis systems published in Knowledge and Information Systems (Q2), and a study integrating genetic algorithms with ensemble learning for enhanced credit scoring presented at the International Conference on Business Information Systems (Class B). Professionally, he has served as a Maître Assistant and teaching assistant, delivering courses in machine learning, deep learning, Python, R, computer architecture, and automata theory, while supervising Master’s research, coordinating academic programs, and contributing to hackathons and university events. His research interests span AI-driven decision systems, interpretable machine learning, evolutionary optimization, and applied deep learning. Recognized for both academic and pedagogical engagement, he continues advancing impactful AI research and education.
Profile : Scopus
Featured Publications
Computer-Aided Diagnosis Systems: A Comparative Study of Classical Machine Learning Versus Deep Learning-Based Approaches. Knowledge and Information Systems, published May 23, 2023. https://doi.org/10.1007/s10115-023-01894-7
Integrating Genetic Algorithms and Ensemble Learning for Improved and Transparent Credit Scoring. International Conference on Business Information Systems, June 25, 2025. (Class B)