Ewa Zender-Świercz | Heat recovery | Best Researcher Award 

Assoc Prof Dr. Ewa Zender-Świercz, Heat recovery, Best Researcher Award 

Doctorate at Kielce University of Technology, Poland

Professional Profile:

Scopus Profile
Google Scholar Profile
Orcid Profile
Research Gate

Summary:

Assoc Prof Dr. Ewa Zender-Świercz is a highly motivated scientist and educator specializing in environmental engineering. With a strong background in research and teaching, she has authored 52 scientific articles in notable journals and serves as a reviewer and editor for several scientific publications. She holds an H-index of 9 and has twice served as a Guest Editor. Currently, she is a Topic Editor for the Journal Atmosphere.

👩‍🎓Education:

  • Habilitation: Environmental Engineering, Mining, and Energy, Lublin University of Technology, Poland
  • Ph.D.: Technical Studies in Environmental Engineering, Kielce University of Technology, Poland
  • M.Sc.Eng.: Environmental Engineering, Krakow University of Technology, Poland

Professional Experience:

Assoc Prof Dr. Ewa Zender-Świercz has held several significant academic and advisory roles. Currently, she is an Associate Professor at Kielce University of Technology, where she has been contributing since 2021. In this role, she conducts research, publishes scholarly articles, and engages in didactic work with students. Prior to this, she served as an Assistant Professor at the same university from 2013 to 2021, with similar responsibilities.

Her professional experience extends beyond academia. From 2018 to 2019, she worked as an Adviser for Zakład Ubezpieczeń Społecznych in Kielce, overseeing the design and execution of ventilation systems. Additionally, from 2017 to 2018, she was an Expert at EPRD Biuro Polityki Gospodarczej i Rozwoju Regionalnego Sp. z o.o., where she reviewed applications for the Polish Agency for Enterprise Development (PARP) in the Polish Product competition.

Earlier in her career, from 2006 to 2013, she served as an Assistant at Kielce University of Technology. She also gained practical engineering experience as a Designer Assistant for Chodor Projekt and Arkad in 2006, focusing on designing HVAC and water systems.

Research Interest :

Assoc Prof Dr. Zender-Świercz’s research interests include sustainable building design, energy efficiency, ventilation systems, and the integration of renewable energy sources in construction. She focuses on improving indoor air quality and enhancing the sustainability of buildings through innovative materials and technologies.

Publication Top Noted:

Thien Tich Truong – Renewable energy – Outstanding Scientist Award 

Assoc Prof Dr. Thien Tich Truong - Renewable energy - Outstanding Scientist Award 

Ho Chi Minh City University of Technology - Vietnam

Author Profile

Early Academic Pursuits

Dr. Thien Tich Truong's academic journey commenced with a fervent pursuit of knowledge in Mechanical Engineering, culminating in a doctoral degree in 2001 from the esteemed Ho Chi Minh City University of Technology (HCMUT), a constituent university of Vietnam National University. Notably, his doctoral studies were supported by the prestigious DAAD Scholarships, which underscored his early academic promise and commitment to scholarly excellence.

Professional Endeavors

Since 2007, Dr. Truong has served as an Associate Professor at HCMUT, where his dedication to teaching, research, and academic leadership has been exemplary. His tenure as Vice President (2012-2023) and subsequent appointment as President (from 2023) of the Vietnam Solid Mechanics Association mark significant milestones in his professional journey, reflecting his esteemed standing within the academic community and his contributions to the advancement of his field.

Contributions and Research Focus

Dr. Truong's research endeavors have spanned various domains within Mechanical Engineering, with a particular emphasis on Computational Mechanics & Optimization. His pioneering work encompasses diverse areas such as structural analysis, numerical methods, material models, optimization techniques, computational fluid dynamics, and biomechanics. Noteworthy among his contributions are advancements in structural strength assessment, metalworking simulation, heat transfer analysis, and biomechanical modeling, all of which have profound implications for industry, academia, and society at large.

Accolades and Recognition

Dr. Truong's scholarly achievements have been recognized both nationally and internationally. His leadership roles within academic associations and his stewardship of collaborative research projects have garnered accolades and prestigious grants. Notably, his coordination of international scientific endeavors, such as the Vietnam Ireland Bilateral Education Exchange (VIBE) projects and the Asia-Link initiative, underscores his capacity to foster cross-cultural partnerships and facilitate knowledge exchange on a global scale.

Impact and Influence

Dr. Truong's research outputs have had a tangible impact on various sectors, ranging from renewable energy to healthcare. His work on wave power stations and renewable energy solutions underscores his commitment to sustainable development and environmental stewardship. Furthermore, his contributions to biomechanics have implications for healthcare, sports performance optimization, and the design of rehabilitation equipment, thereby enhancing human well-being and quality of life.

Legacy and Future Contributions

As Dr. Truong continues to spearhead groundbreaking research and academic initiatives, his legacy as a visionary leader and scholar is assured. His commitment to nurturing the next generation of researchers, fostering international collaborations, and addressing pressing societal challenges ensures that his influence will endure for years to come. With an unwavering dedication to excellence and innovation, Dr. Thien Tich Truong remains at the forefront of advancing knowledge and shaping the future landscape of Mechanical Engineering and Computational Mechanics.

Citations

A total of 565 citations for his publications, demonstrating the impact and recognition of her research within the academic community.

 

Liyuan Liu – Renewable energies – Women Researcher Award 

Ms. Liyuan Liu - Renewable energies - Women Researcher Award 

Newcastle University - United Kingdom

Author Profile

Early Academic Pursuits

Ms. Liyuan Liu embarked on his academic journey at Northwestern Polytechnical University in Xi'an, China, where he pursued a Bachelor of Aeronautical Engineering, specializing in Aircraft Design from September 2010 to June 2014. This foundational period honed his technical skills and sparked an enduring interest in applying sophisticated engineering principles to real-world problems. His performance at this stage was distinguished, culminating in his recognition as an Outstanding Student Pacesetter, and being ranked 5th among undergraduates at the university in 2014.

Professional Endeavors

After completing his bachelor’s degree, Liyuan Liu continued to expand his expertise and experience across various roles that leveraged his engineering background and burgeoning interest in data science. He joined the Ministry-of-Education Key Laboratory of Fluid Mechanics in China as a Cloud HPC Engineer, where he led the development of an automated cloud platform for scientific computing. His role evolved into that of a Data Analyst at the same institution, where he applied advanced statistical methodologies to model complex, chaotic systems. Liu then pursued a Ph.D. in Engineering and Information Technology at The University of Melbourne, where he developed machine learning models for the super-resolution reconstruction of turbulent flows, significantly improving model accuracy and computation speed.

Contributions and Research Focus On Renewable energies

Ms. Liyuan Liu's research has predominantly focused on integrating machine learning with traditional engineering disciplines. His Ph.D. research at The University of Melbourne resulted in novel applications of machine learning to improve the accuracy and efficiency of simulations in turbulent flows, pertinent to renewable energy systems. This work was critical in advancing the field of engineering by incorporating AI into the analysis and design processes. Liu continued to build on this foundation through various roles post-PhD, including positions at Newcastle University and the National Institutes of Science and Technology in Rouen, France. Here, he led initiatives in forecasting chemical reactions for hydrogen and developed scalable machine learning models on cloud platforms like AWS and Google Cloud.

Accolades and Recognition

Ms. Liyuan Liu's innovative research and contributions have earned him various awards and recognition. Notably, he was a recipient of the National Scholarship from the Ministry of Education of the People’s Republic of China in 2013. He also secured top positions in the Network Mathematical Contest in Modelling in China and received an Honorable Mention in the Mathematical Contest in Modeling in the USA. His academic excellence and leadership in machine learning applications were further recognized with the Third Prize in the Australian Fluid Mechanics Society Data Visualization Competition in 2020.

Impact and Influence

Ms. Liu's work has significantly impacted the field of data science and engineering, particularly through his contributions to machine learning applications in physical systems and simulations. His research has enhanced the accuracy and efficiency of predictive models, which are critical for optimizing the performance of renewable energy systems and other complex engineering tasks. His expertise in both traditional engineering and advanced machine learning techniques positions him as a bridge between these often separate disciplines, fostering a more integrated approach in research and development.

Legacy and Future Contributions

Looking ahead, Liyuan Liu is positioned to continue making significant contributions to the fields of machine learning and engineering. His ongoing projects and collaborations indicate a commitment to advancing the integration of AI technologies in scientific and engineering applications. His future research will likely continue to focus on enhancing model accuracies and computational efficiencies, potentially revolutionizing how complex engineering problems are solved through AI. His dedication to continuous learning and adaptability suggests that he will remain at the forefront of technological advancements, contributing to both academic and practical advancements in his field.

Notable Publication