Abdul Hakeem Anwer | Environmental Data Analysis | Best Researcher Award

Dr. Abdul Hakeem Anwer | Environmental Data Analysis | Best Researcher Award

Qatar University | Qatar

Abdul Hakeem Anwer is a dedicated researcher in the fields of electrocatalytic reduction, nanomaterials, and sustainable energy systems. His career reflects a strong commitment to advancing scientific innovation, particularly in developing efficient solutions for carbon dioxide reduction, wastewater treatment, supercapacitors, and microbial fuel cells. With a proven record of research excellence and international collaboration, he has established himself as a promising scientist in chemistry and materials science.

Professional Profiles

Scopus
Orcid
Google Scholar

Education

He pursued his academic journey at Aligarh Muslim University, India, where he completed his Bachelor’s, Master’s, and Doctorate in Industrial Chemistry and Chemistry. His Ph.D. research focused on bioproduct formation using bioelectrochemical systems, laying the foundation for his later work on advanced nanomaterials and electrocatalysis. His academic training equipped him with strong experimental, analytical, and problem-solving skills to address pressing global challenges in energy and environmental sciences.

Experience

Abdul Hakeem has worked as a Postdoctoral Fellow at Qatar University, where his research centers on electrocatalytic CO2 reduction and advanced nanomaterials, alongside mentoring graduate students. Previously, he served at Yeungnam University, South Korea, collaborating with multidisciplinary teams to push forward energy and environmental projects. Before these international engagements, he contributed as a Senior Research Fellow at IIT Delhi and as a Research Assistant at AMU, where he worked on materials development for microbial fuel cells and energy storage applications. His early industrial experience as a chemist in a food products company gave him practical insights into applied chemistry and quality assessment, broadening his professional expertise.

Research Interests

His research spans electrocatalysis, advanced nanomaterials, CO2 reduction technologies, microbial fuel cells, photocatalysis, and supercapacitors. He is particularly focused on developing hybrid materials, metal-organic frameworks (MOFs), and nanostructures for energy harvesting, wastewater remediation, and pollutant degradation. His scientific contributions highlight innovative pathways to sustainable energy, environmental remediation, and the circular economy, aligning with global needs for clean technologies and green energy solutions.

Awards

Abdul Hakeem’s scientific excellence has been recognized through multiple awards and travel grants. He received support from the European Molecular Biology Laboratory (EMBL) to present at the Global CO2 Challenge in Germany and was granted the Trans-YTF fellowship by the Federation of European Biochemical Societies (FEBS) to participate in an advanced lecture course in Greece. Additionally, he secured a Council of Science and Technology fellowship in India, underscoring his contributions to funded research projects. His achievements reflect both his international standing and his ability to contribute meaningfully to collaborative scientific networks.

Publications

Mashkoor, F., Mashkoor, R., Shoeb, M., Anwer, A.H., Ansari, M.Z., & Jeong, C. (2023). A smart recycling solution: WS₂-halloysite nanocomposite for heavy metals remediation from wastewater and postliminar application in electrochemical supercapacitor for energy storage. Applied Clay Science.

Mahmoud, K.H., Alsubaie, A.S., Anwer, A.H., & Ansari, M.Z. (2023). Comparative Analysis of Perovskite Solar Cells for Obtaining a Higher Efficiency Using a Numerical Approach. Micromachines, 14(6), 1127.

Mashkoor, F., Mashkoor, R., Shoeb, M., Anwer, A.H., Jeong, H., & Jeong, C. (2023). Freestanding WS₂-MWCNT Nanocomposite for Electrochemical Detection of Contaminants of Emerging Concern—Perfluorooctanoic Acid “A Forever Chemical” and Supercapacitor Applications. ACS Sustainable Chemistry & Engineering, 11(32), 11842–11854.

Waris, Anwer, A.H., & Khan, M.Z. (2023). Graphene quantum dots for clean energy solutions. In Graphene Quantum Dots: Biomedical and Environmental Sustainability Applications (pp. 65–88). Elsevier.

Ahmad, N., Bano, D., Jabeen, S., Ahmad, N., Iqbal, A., Waris, Anwer, A.H., & Jeong, C. (2023). Insight into the adsorption thermodynamics, kinetics, and photocatalytic studies of polyaniline/SnS₂ nanocomposite for dye removal. Journal of Hazardous Materials Advances, 9, 100321.

Conclusion

Through his academic journey, international experience, and impactful research, Abdul Hakeem Anwer has emerged as a forward-looking scientist dedicated to solving complex challenges in energy and environmental chemistry. His work on nanomaterials, electrocatalysis, and bioelectrochemical systems continues to inspire sustainable innovation and global collaboration. With a growing portfolio of high-impact publications, book chapters, and a granted patent, he remains committed to advancing clean energy solutions and eco-efficient technologies for the future.

Jana Petrović | Materials in catalysis | Best Researcher Award

Ms. Jana Petrović | Materials in catalysis | Best Researcher Award

Innovation Centre of the Faculty of Technology and Metallurgy | Serbia

Jana Petrović is a dedicated researcher specializing in semiconductor materials and photocatalysis, with a strong focus on developing innovative materials for the photocatalytic reduction of hexavalent chromium under visible light irradiation. Her career reflects a continuous commitment to scientific excellence, innovation, and practical applications in environmental protection and advanced material science. She has contributed to research and development in the field of chemical engineering and material science, actively participating in cutting-edge projects and presenting promising outcomes for sustainable technological solutions.

Professional Profile

ORCID

Education

Jana pursued her academic journey at the University of Belgrade – Faculty of Technology and Metallurgy, where she successfully completed undergraduate and master’s studies in chemical engineering and is currently enrolled in doctoral academic studies. Her formal education provided her with an exceptional foundation in chemical engineering principles, materials science, and environmental technologies. Through rigorous academic training, she has developed extensive expertise in advanced research methodologies and analytical techniques that contribute to her innovative work in photocatalysis and semiconductor materials.

Experience

Her professional career began as a Young Research Intern, where she contributed to research projects focusing on material science and environmental applications. Currently, she holds the position of Research Assistant at the Innovation Center of the Faculty of Technology and Metallurgy, where she continues to expand her expertise in materials characterization and innovative photocatalytic technologies. Her role involves conducting experiments, analyzing materials through advanced characterization techniques such as FESEM microscopy, BET surface analysis, XRD and FTIR analysis, and UV-Vis spectroscopy, as well as contributing to collaborative research initiatives aimed at environmental sustainability.

Research Interest

Jana’s primary research interests lie in the field of semiconductor materials and photocatalysis, with a particular focus on materials designed for the photocatalytic reduction of hexavalent chromium under visible light irradiation. Her work addresses key environmental challenges by exploring sustainable and efficient ways to remove toxic pollutants from industrial wastewater. She is passionate about the development of new materials that harness visible light for effective photocatalytic reactions, contributing to cleaner technologies and innovative solutions in the field of environmental remediation.

Awards

Throughout her academic and research career, Jana has been recognized with multiple scholarships and awards for her outstanding achievements and contributions to science. She has received prestigious scholarships from national foundations supporting young researchers and talented students, as well as institutional recognition for her excellence in academic and research performance. These accolades reflect her dedication to advancing scientific knowledge and her potential to make a significant impact in the fields of chemical engineering and materials science.

Publications

Petrović, J., Radovanović, Ž., Obradović, B., Janaćković, Đ., Petrovic, R., et al. (2025). “Modification of surface properties and photocatalytic performance of pure and oxygen-doped graphitic carbon nitride via DBD plasma treatment” in Journal of the Serbian Chemical Society.

Petrović, J., Radovanović, Ž., Lazarević, S., Barać, N., Janaćković, Đ., Petrovic, R., et al. (2024). “Synthesis of photocatalysts for the reduction of hexavalent chromium by modification of TiO₂ with nanoparticles of Cu and/or CdS” in Tehnika.

Conclusion

Jana Petrović stands as a promising researcher whose work bridges the gap between innovative material science and environmental sustainability. Her dedication to research, coupled with her hands-on expertise in advanced materials characterization techniques, positions her as a valuable contributor to the scientific community. With a strong foundation in chemical engineering, a growing portfolio of research accomplishments, and a clear focus on solving critical environmental challenges, she continues to advance the field of photocatalysis and semiconductor materials, paving the way for sustainable technological advancements.

Rubesh Ashok Kumar s | Science and Humanities Research | Best Researcher Award

Dr. Rubesh Ashok Kumar s | Science and Humanities Research | Best Researcher Award

Chennai institute of technology | India

Dr. Rubesh Ashok Kumar is a dynamic and passionate research scholar in the field of materials science, currently pursuing his Ph.D. at Aarupadai Veedu Institute of Technology (AVIT), Chennai, under Vinayaka Mission’s Research Foundation (VMRF). With a strong foundation in chemistry and over four years of hands-on experience in academic and applied research, he has made notable contributions to the development of nanomaterials, particularly focusing on MXene-based semiconductor nanocomposites for environmental remediation. His dedication to scientific inquiry is reflected in his extensive publication record, collaborative projects, and consistent participation in national and international conferences. Dr. Rubesh is known for his methodical approach to experimental chemistry and his commitment to solving real-world environmental issues through innovative photocatalytic technologies.

Professional Profile

ORCID

GOOGLE SCHOLAR

Education

Dr. Rubesh Ashok Kumar began his academic journey with a Bachelor’s degree in Chemistry from The American College, followed by a Master’s degree in Chemistry from NMSSVN College. These formative years laid the groundwork for his deep interest in materials chemistry and nanotechnology. His academic training emphasized core chemical principles, analytical techniques, and experimental design, which he later expanded upon during his postgraduate project on selective ion detection using hydrazone units. His current doctoral research at AVIT focuses on the synthesis and characterization of semiconductor metal oxide-incorporated MXene nanomaterials, targeting efficient photocatalytic applications for environmental cleanup. This research has allowed him to explore advanced synthesis methods such as hydrothermal and co-precipitation techniques, contributing significantly to his academic and professional growth.

Experience

Dr. Rubesh’s professional journey reflects a seamless integration of academic research and technical expertise. He began his career as a Technical Analyst at SPI Global, where he worked on chemistry-related content and analysis. He later joined SRM Institute of Science and Technology (SRM-IST), Chennai, as a researcher, focusing on graphene-based polymer nanocomposites for energy and environmental applications. Since November 2021, he has been working as a Ph.D. scholar at AVIT, where he has been instrumental in leading projects related to MXene nanocomposites for wastewater treatment. His collaborative nature and research aptitude have led to successful partnerships with renowned institutions and scientists from Taiwan, South Korea, and India. He has also engaged in teaching undergraduate courses, offering lab instruction in engineering chemistry and environmental science, further extending his influence as a mentor and educator.

Research Interest

Dr. Rubesh’s research interests lie at the intersection of nanotechnology and environmental science. His core focus is the development of MXene-based semiconductor nanocomposites for advanced oxidation processes (AOP) to treat dye pollutants, antibiotics, and pharmaceutical waste in wastewater. He specializes in synthesizing various metal oxide nanomaterials using hydrothermal and co-precipitation techniques, investigating their structural, optical, and photocatalytic properties. His work involves rigorous studies on photocatalytic degradation under visible and sunlight irradiation using annular photo reactors, and includes electrochemical analysis and thin film coatings. In addition, he has explored reaction kinetics, reusability studies, and catalyst optimization to enhance the real-time efficiency of wastewater remediation processes. His skillset extends to multiple analytical techniques, such as FTIR, UV-Vis spectroscopy, AFM, and COD analysis, positioning him as a well-rounded and highly capable materials chemist.

Awards and Recognitions

Dr. Rubesh has received several accolades for his outstanding research contributions. He secured the first prize at the International Conference on Hybrid Solar Cell Technology (ICSCT 2023) for his oral presentation on photocatalytic degradation using MXene-based materials. His work was further recognized with the third prize during the University Research Day 2024 organized by VMRF for his innovative presentation on sunlight-assisted degradation of pollutants. These achievements highlight not only his academic excellence but also his ability to communicate complex scientific findings effectively. Moreover, he has been an active participant in numerous workshops, training programs, and international seminars focused on nanomaterials and environmental technology, demonstrating his continuous commitment to professional development.

Publications

Impact of WO₃:CeO₂@MXene/g-C₃N₄ nano disk on sunlight-driven photocatalytic removal of fluoroquinolone antibiotic and high-performance supercapacitor application

Authors: Rubesh Ashok Kumar Selvakumar; Vasvini Mary Devaraj; Rachel Angeline Lenin; Nagarani Sandran; Jih-Hsing Chang; Suganya Josephine Gali Anthoni
Journal: Carbon Letters
Year: 2025

An efficient rare earth metal oxide-supported MXene/g-C₃N₄ photocatalyst for removing organic dye from wastewater

Authors: D. Vasvini Mary; S. Rubesh Ashok Kumar; G.A. Suganya Josephine
Journal: Journal of the Indian Chemical Society
Year: 2025

Nano Janue-like N-doped ZnO bundles as efficient photocatalysis for the removal of endocrine disruptor under visible-light irradiation

Authors: Suganya Josephine Gali Anthoni; Rubesh Ashok Kumar Selva Kumar; Vasvini Mary Devaraj; Prathap Kumar Mani; Sivasamy Arumugam
Journal: Pure and Applied Chemistry
Year: 2025

Construction of coral reef-like transition/rare earth metal oxide-supported g-C₃N₄-based nanocomposite: A new approach for enhanced visible light-assisted photocatalytic removal of orange G dye

Authors: D. Vasvini Mary; S. Rubesh Ashok Kumar; Jennifer G. Joseph; B. Dhanalakshmi; G.A. Suganya Josephine
Journal: Applied Catalysis O: Open
Year: 2024

Graphene/GO/rGO based nanocomposites: Emerging energy and environmental application–review

Authors: S. Rubesh Ashok Kumar; D. Vasvini Mary; G.A. Suganya Josephine; Mohamed A. Riswan Ahamed
Journal: Hybrid Advances
Year: 2024

Hydrothermally synthesized WO₃:CeO₂ supported g-C₃N₄ nanolayers for rapid photocatalytic degradation of azo dye under natural sunlight

Authors: S. Rubesh Ashok Kumar; D. Vasvini Mary; G.A. Suganya Josephine; A. Sivasamy
Journal: Inorganic Chemistry Communications
Year: 2024

Conclusion

Dr. Rubesh Ashok Kumar exemplifies a new generation of researchers dedicated to addressing environmental challenges through scientific innovation. With a solid academic background, diverse research experience, and a clear focus on sustainable nanomaterials, he stands out as a promising scientist in the field of photocatalysis and wastewater treatment. His collaborative projects, international exposure, and consistent contributions to high-impact journals underscore his potential to make long-lasting contributions to environmental nanotechnology. As he continues to advance in his academic journey, Dr. Rubesh remains committed to producing impactful research that bridges material science with environmental sustainability, contributing meaningfully to global scientific progress.

Ilias Stamatelos – Electrocatalysis – Best Researcher Award 

Mr. Ilias Stamatelos - Electrocatalysis - Best Researcher Award 

Forschungszentrum Jülich - Germany

Author Profile

Early Academic Pursuits

Mr. Ilias Stamatelos embarked on his academic journey at the prestigious National Technical University of Athens (NTUA), where he pursued a Diploma in Chemical Engineering. This initial phase of his education laid the foundation for his specialized skills in chemical processes, particularly focusing on areas pivotal to energy conversion and storage technologies. His time at NTUA was marked by a rigorous curriculum that shaped his analytical and problem-solving skills, essential for his later research in electrochemical engineering.

Professional Endeavors

After completing his diploma, Ilias transitioned to a PhD program at RWTH Aachen University, where he delved deeper into Electrochemical Engineering. His doctoral research focused on the "Development of electrode architectures and novel membrane electrode assembly concepts for CO2 electrolyzers," a topic at the cutting edge of renewable energy technology. Following his PhD, Ilias joined Forschungszentrum Jülich GmbH, first as a PhD student and then as scientific personnel within the Electrochemical Process Engineering group. Here, he expanded his expertise by working on novel CO2 electrolyzers and alkaline water electrolysis, key technologies for sustainable energy systems.

Contributions and Research Focus On Electrocatalysis

Throughout his professional career, Ilias Stamatelos has concentrated on the development and optimization of technologies for CO2 electrolysis and water electrolysis. His work involves the synthesis and optimization of catalysts and the fabrication of catalyst layers and membrane-electrode assemblies (MEAs), critical components of electrolyzers. These efforts are geared towards improving the efficiency and scalability of devices that convert CO2 into useful chemicals and fuels, thereby addressing crucial aspects of the energy transition towards greener alternatives.

Accolades and Recognition

Mr. Ilias's work has not only contributed to scientific advancements but has also been recognized through various awards and grants, such as the Mitacs-Globalink Award. This acknowledgment from peers and leading scientific organizations highlights his significant contributions to the field of electrochemical engineering and his potential to drive further innovations.

Impact and Influence

The research carried out by Ilias Stamatelos at institutions like Forschungszentrum Jülich and Queen’s University has positioned him as a notable figure in the realm of electrochemical technologies. His work on catalyst synthesis and MEA fabrication has crucial implications for the scalability of electrolyzers, potentially lowering the barriers for the widespread adoption of these technologies. By improving the efficiency and cost-effectiveness of these systems, his research contributes directly to the enhancement of sustainable and renewable energy landscapes globally.

Legacy and Future Contributions

Looking forward, Ilias Stamatelos is poised to make lasting contributions to the field of electrochemical engineering. His ongoing projects on CO2 and water electrolysis are not only pivotal for achieving energy sustainability but also for reducing global carbon emissions. His focus on mentoring and supervising MSc students ensures that his knowledge and passion for green technologies are passed on to the next generation of engineers and researchers, thereby amplifying his impact on the field.

Ilias's trajectory shows a clear path towards leadership in developing technologies that harness chemical processes for environmental benefit. His future work will likely continue to focus on refining these technologies and possibly exploring new avenues within electrochemical applications, setting a robust example for future innovations in green technology solutions.

Citations

A total of 10 citations for his publications, demonstrating the impact and recognition of her research within the academic community.

Ziyi Zhong – Catalysis – Best Researcher Award

Prof Ziyi Zhong - Catalysis - Best Researcher Award

Guangdong Technion-Israel Institute of Technology - China

Author Profile

Early Academic Pursuits

Prof Ziyi Zhong began his academic journey with a Bachelor of Science degree in Chemistry from Wuhan University, graduating in 1985. He continued his education with a Master of Science degree in Chemistry at Wuhan University, completing it in 1988 under the guidance of Prof. Zhang Shaohui.

Following this, he pursued a Ph.D. in Chemistry at Nanjing University, completing it in 1995 under the mentorship of Prof. Fu Xiancai and Prof. Yan Qijie.

Professional Endeavors

After obtaining his Ph.D., Prof  Ziyi Zhong took up a postdoctoral position, spending a significant period (1997-2003) as a researcher at various institutions, including Bar-Ilan University, University of Washington, and National University. During this time, he also worked as an associate professor in the Chemistry department at Hunan Normal University from 1995 to 1997.

In 2003, he transitioned to Singapore, joining the Institute of Chemical and Engineering Sciences. Over the next 15 years (2003-2018), he progressed from Scientist I to Senior Scientist, making substantial contributions to the field of Heterogeneous Catalysis.

In 2018, Ziyi Zhong took on a new role as a Full Professor in the Chemical Engineering department at Guangdong Technion Israel Institute of Technology (GTIIT). Notably, he assumed a tenured professorship in October 2020.

Contributions and Research Focus

Prof  Ziyi Zhong's research interests are diverse and impactful. His primary focus lies in Heterogeneous Catalysis, particularly in the design and synthesis of nanosized catalysts for environmental remediation. His work extends to clean energy and energy storage materials, wastewater treatment, surface chemistry, and various nanosized materials, including solid adsorbents.

One of his significant contributions includes research on electrocatalytic and photocatalytic CO2 methanation, as evidenced by a recent publication in ChemCatChem. His work on porous In2O3 hollow tubes infused with g-C3N4 for CO2 photocatalytic reduction, published in ACS Applied Materials & Interfaces, showcases his commitment to sustainable technologies.

Accolades and Recognition

Prof  Ziyi Zhong has garnered recognition for his scholarly contributions, with a total of 19000 citations as of January 16, 2024, and an impressive H-index of 71 according to Google Scholar.

Impact and Influence

Prof  Ziyi Zhong's influence extends beyond academia. He has been actively involved in professional organizations, serving as an executive member of the Agency for Science, Technology and Research (A*STAR) in Singapore. His membership in the Chinese Chemical Society and executive role in the Singapore catalysis society highlight his commitment to advancing the field.

Legacy and Future Contributions

As a tenured professor at GTIIT, Prof  Ziyi Zhong continues to shape the future of chemical engineering education. His teaching experience spans several decades, including courses in physical chemistry and heterogeneous catalysis. Through his research and teaching, Ziyi Zhong leaves a lasting legacy in the realms of catalysis, environmental remediation, and sustainable materials, setting the stage for future contributions in these crucial areas.

Notable Publication