Amin Hekmatmanesh | Algorithm Development | Best Researcher Award

Dr. Amin Hekmatmanesh l Algorithm Development Β | Best Researcher Award

LUT University, Finland

Author Profile

Google Scholar

πŸ”Ž Summary

Dr. Amin Hekmatmanesh is a skilled biomedical engineer and data scientist, specializing in wearable sensors, AI, and machine learning applications for health technologies. He has extensive experience in biosignal processing (EEG, ECG, PPG, EMG, GSR, IMU), rehabilitation robotics, and medical device development. With a Ph.D. in Mechanical Engineering (Biomedical Engineering), he has made significant contributions to the field by developing real-time systems for rehabilitation and health monitoring. His research focuses on using AI to advance rehabilitation robotics and human-robot interactions, publishing over 30 peer-reviewed articles. He is also an active reviewer and editorial board member for several high-ranking journals.

πŸŽ“ Education

Dr. Hekmatmanesh holds a Ph.D. in Mechanical Engineering (Biomedical Engineering) from LUT University in Finland, where he achieved a GPA of 4.33. His dissertation focused on artificial intelligence and machine learning for EEG signal processing in rehabilitation robotics. He also completed his M.Sc. in Biomedical Engineering at Shahed University in Iran, with a perfect GPA of 4.0, and a B.Sc. in Electrical Engineering from Islamic Azad University, graduating with a GPA of 4.1.

πŸ’Ό Professional Experience

Dr. Hekmatmanesh has a diverse professional background, having worked as a Lead Project Manager at Mevea Company, where he managed health monitoring system projects, incorporating wearable sensor technology. At Flowgait Company, he contributed to mathematical solutions for horse motion analysis. As a Junior Researcher and Project Manager at LUT University, he focused on wearable sensor systems and health monitoring. Additionally, he worked as a Research Assistant at Tehran University, working on diagnostic algorithms and therapeutic systems in health technologies.

πŸ“š Academic Citations

Dr. Hekmatmanesh has published over 30 peer-reviewed papers, including book chapters and review articles, and his work has contributed significantly to the biomedical engineering and AI fields. His research has received wide recognition, and he is regularly invited to participate in scientific conferences and review for high-impact journals, showcasing his influence and contributions to advancing health technologies.

πŸ”§ Technical Skills

Dr. Hekmatmanesh is highly proficient in biosignal processing, including EEG, ECG, PPG, EMG, GSR, and IMU signals. He is skilled in machine learning and AI, specifically for biosignal classification and real-time system development. His technical expertise extends to embedded electronics, sensor design, and circuit board assembly. He is proficient in Python and Matlab for data analysis and has experience using version control tools like GitHub to manage research projects.

πŸŽ“ Teaching Experience

Dr. Hekmatmanesh has been actively involved in teaching and mentoring within the biomedical engineering field. He has supervised PhD students and contributed to academic programs by delivering lectures and guiding research projects in health technologies, machine learning, and rehabilitation robotics.

πŸ”¬ Research Interests On Algorithm Development

Dr. Hekmatmanesh’s research interests include the development of wearable sensor systems for health monitoring, AI and machine learning techniques for biosignal classification, and the design and control of rehabilitation robotics. He is also focused on human-robot interactions and improving prosthetics control through innovative AI applications in healthcare.

πŸ“– Top Noted Publications

Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger
    • Authors: PS Zangabad, M Karimi, F Mehdizadeh, H Malekzad, A Ghasemi, …
    • Journal: Nanoscale
    • Year: 2017
Review of the state-of-the-art of brain-controlled vehicles
    • Authors: A Hekmatmanesh, PHJ Nardelli, H Handroos
    • Journal: IEEE Access
    • Year: 2021
Neurosciences and wireless networks: The potential of brain-type communications and their applications
    • Authors: RC Moioli, PHJ Nardelli, MT Barros, W Saad, A Hekmatmanesh, …
    • Journal: IEEE Communications Surveys & Tutorials
    • Year: 2021
A combination of CSP-based method with soft margin SVM classifier and generalized RBF kernel for imagery-based brain computer interface applications
    • Authors: A Hekmatmanesh, H Wu, F Jamaloo, M Li, H Handroos
    • Journal: Multimedia Tools and Applications
    • Year: 2020
EEG control of a bionic hand with imagination based on chaotic approximation of largest Lyapunov exponent: A single trial BCI application study
    • Authors: A Hekmatmanesh, RM Asl, H Wu, H Handroos
    • Journal: IEEE Access
    • Year: 2019

Shubing Dai | Algorithm Development | Best Researcher Award

Prof. Shubing Dai | Algorithm Development | Best Researcher Award

Prof. Shubing Dai at Northwest A&F University, China

Professional ProfileπŸ‘¨β€πŸŽ“

πŸ‘¨β€πŸ« Summary

Prof. Shubing Dai is an Associate Professor at Northwest A&F University, specializing in Hydraulic Engineering. With a background in Hydraulics and River Dynamics, he has published over 20 research papers and actively participated in over 20 research projects. His work primarily focuses on urban flood management, hydraulic structures, and water flow dynamics. He is also an active member of key professional organizations, including the China Society for Hydroelectric Engineering and the International Association for Hydro-Environment Engineering and Research (IAHR).

πŸŽ“ Education

Prof. Dai began his academic career at Northwest A&F University, where he earned his Bachelor’s (2008–2012) and Master’s (2012–2015) degrees in Hydraulic and Hydroelectric Engineering. He then pursued a Ph.D. in Hydraulics and River Dynamics at Dalian University of Technology (2016–2021). Additionally, he worked as a visiting scholar at the University of La CoruΓ±a in Spain (2024).

πŸ’Ό Professional Experience

Prof. Dai has extensive professional experience, both in academia and industry. He currently serves as an Associate Professor at Northwest A&F University and the Department Secretary of the Hydraulic Engineering Department. He also previously worked as an Assistant Engineer at the Changjiang Survey, Planning, and Design Institute (2015–2016), contributing to several major hydropower and hydraulic engineering projects.

πŸ“š Academic Contributions

Prof. Dai is an active contributor to the academic community, serving as a reviewer for several leading journals such as Journal of Hydrology and Physics of Fluids. He also serves as an editorial board member for an international journal. His research focuses on water resources, hydraulic structures, and flow dynamics, with over 20 published papers and several high-impact research projects.

πŸ”§ Technical Skills

Prof. Dai has developed a range of technical skills, including:

  • Hydraulic Engineering: Focus on energy dissipation and optimization of flood discharge systems.
  • Urban Flooding & Drainage: Expertise in urban drainage system design, stormwater management, and flood mitigation.
  • Flow Dynamics: Proficient in Computational Fluid Dynamics (CFD) and non-steady flow simulations for hydraulic applications.
  • Hydropower Engineering: In-depth research on dam-break flood modeling, hydraulic structures, and their interactions with water flow.

πŸ‘©β€πŸ« Teaching Experience

As a dedicated educator, Prof. Dai mentors master’s students and teaches courses on fluid dynamics, hydraulic modeling, and water resource management. He is also responsible for the administration of the Water Resources and Hydroelectric Engineering department at Northwest A&F University, playing a key role in curriculum development and academic planning.

πŸ”¬ Research Interests

Prof. Dai’s research interests are focused on:

  • Hydraulic Engineering: Research on energy dissipation in hydraulic structures and optimization of flood discharge processes.
  • Flood Disaster Management: Urban flood management, drainage systems, and dam-break flood evolution.
  • Non-steady Flow & Hydrodynamics: Investigating the dynamics of free-surface flows, wave behavior, and non-constant flow conditions in hydraulic systems.

πŸ” Research Projects

Prof. Dai leads and participates in several important research projects, such as:

  • City Flood and Drainage Systems Simulation (2022–2025)
  • Optimization of Urban Drainage Under Extreme Rainfall Conditions (2023–2025)
  • Dam-Break Flood Evolution and Structural Interaction Studies (2024–2026)
    He is also involved in national and regional projects on hydraulic structure optimization, flood forecasting, and water resource management.

 

πŸ“–Top Noted Publications

Numerical study of roll wave development for non-uniform initial conditions using steep slope shallow water equations

Authors: Dai, S., Liu, X., Zhang, K., Liu, H., Jin, S.
Journal: Physics of Fluids
Year: 2024

Discharge coefficients formulae of grate inlets of complicated conditions for urban floods simulation and urban drainage systems design

Authors: Dai, S., Hou, J., Jin, S., Hou, J., Liu, G.
Journal: Journal of Hydrology
Year: 2023

Land Degradation Caused by Construction Activity: Investigation, Cause and Control Measures

Authors: Dai, S., Ma, Y., Zhang, K.
Journal: International Journal of Environmental Research and Public Health
Year: 2022

Numerical investigations of unsteady critical flow conditions over an obstacle using three models

Authors: Dai, S., Jin, S.
Journal: Physics of Fluids
Year: 2022

Interception efficiency of grate inlets for sustainable urban drainage systems design under different road slopes and approaching discharges

Authors: Dai, S., Jin, S., Qian, C., Ma, Y., Liang, C.
Journal: Urban Water Journal
Year: 2021