Sherin Zafar | Machine Learning  | Women Researcher Award

Dr. Sherin Zafar | Machine Learning  | Women Researcher Award

Jamia Hamdard | India

PUBLICATION PROFILE

Scopus

🌟 DR. SHERIN ZAFAR: ACADEMIC AND RESEARCH PIONEER 

👩‍🏫 INTRODUCTION

Dr. Sherin Zafar is an accomplished Assistant Professor in the Department of Computer Science and Engineering at the School of Engineering Sciences and Technology, Jamia Hamdard, New Delhi. Joining the institution in 2015, she has made remarkable contributions to teaching, research, and faculty development. With expertise in network security, machine learning, and health informatics, Dr. Zafar continues to inspire both students and colleagues alike.

🎓 EARLY ACADEMIC PURSUITS

Dr. Zafar’s academic journey began with a Bachelor’s degree in Computer Engineering from Rajiv Gandhi Proudyogiki Vishwavidyalaya (RGPV), Bhopal, followed by a Master’s degree in the same field. Her passion for optimizing network protocols led her to complete her Ph.D. at Manav Rachna International Institute of Research and Studies (MRIIRS) in 2015, where she focused on creating secure protocols for Mobile Ad-Hoc Networks (MANETs) through biometric authentication.

💼 PROFESSIONAL ENDEAVORS

Since joining Jamia Hamdard, Dr. Zafar has been dedicated to academic growth and research excellence. Her professional endeavors span the fields of artificial intelligence (AI), health informatics, and wireless networks. A regular participant in faculty development programs (FDP), workshops, and international conferences, Dr. Zafar stays at the forefront of technological advancements, demonstrating her commitment to personal and professional growth.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

Dr. Zafar’s research interests are centered around applying AI and computational techniques to real-world problems, especially in health and security. Her work in e-health, including maternal health improvement through AI-based systems, and the development of secure network protocols, highlights her commitment to impactful research. She has also explored the application of machine learning in smart city technologies and water quality monitoring.

🌍 IMPACT AND INFLUENCE

Dr. Zafar has made a significant impact in the academic community through her publications and collaborative research. Her work in healthcare AI, optimization techniques, and network security has been widely recognized and cited by scholars and professionals worldwide. Her contributions have advanced both theoretical and practical aspects of computer science and engineering.

📚 ACADEMIC CITATIONS AND PUBLICATIONS

Dr. Zafar’s academic footprint includes high-quality research papers published in top-tier journals and international conference proceedings. Her studies, including works on AI in healthcare and photo captioning for visually impaired individuals, have been published in journals like Heliyon, Proceedings on Engineering Sciences, and Multimedia Tools and Applications. These works have been indexed in Scopus and Web of Science, contributing to the ongoing academic dialogue.

🏆 HONORS & AWARDS

Throughout her career, Dr. Zafar has received several honors in recognition of her contributions to teaching and research. These accolades showcase her dedication to enhancing the educational landscape and driving innovations in technology and healthcare.

🛠️ LEGACY AND FUTURE CONTRIBUTIONS

As Dr. Zafar continues her work at Jamia Hamdard, her legacy is one of inspiring innovation and fostering academic excellence. With a focus on AI, machine learning, and secure communications, her future research is poised to make lasting contributions to the fields of computer science and healthcare, inspiring future generations of researchers and professionals.

📜 FINAL NOTE

Dr. Sherin Zafar’s career is a testament to her passion for research and teaching. Through her groundbreaking research in AI, network security, and healthcare, Dr. Zafar has earned a well-deserved reputation as a leader in her field. As she continues her academic journey, her influence will undoubtedly shape the future of computer science and engineering, leaving a lasting legacy for years to come.

📚 TOP NOTES PUBLICATIONS 

Internet of things assisted deep learning enabled driver drowsiness monitoring and alert system using CNN-LSTM framework

Authors: S.P. Soman, Sibu Philip G., Senthil Kumar G., S.B. Nuthalapati, Suri Babu S., Zafar Sherin, K.M. Abubeker K.M.
Journal: Engineering Research Express
Year: 2024

Holistic Analysis and Development of a Pregnancy Risk Detection Framework: Unveiling Predictive Insights Beyond Random Forest

Authors: N. Irfan Neha, S. Zafar Sherin, I. Hussain Imran
Journal: SN Computer Science
Year: 2024

Correction to: A transformer based real-time photo captioning framework for visually impaired people with visual attention

Authors: A.K.M. Kunju Abubeker Kiliyanal Muhammed, S. Baskar S., S. Zafar Sherin, S. Rinesh S., A. Shafeena Karim A.
Journal: Multimedia Tools and Applications
Year: 2024

A transformer based real-time photo captioning framework for visually impaired people with visual attention

Authors: K.M. Abubeker K.M., S. Baskar S., S. Zafar Sherin, S. Rinesh S., A. Shafeena Karim A.
Journal: Multimedia Tools and Applications
Year: 2024

 Enhancing Heart Health Prediction with Natural Remedies Through Integration of Hybrid Deep Learning Models

Authors: L.M.S. Akoosh Lamiaa Mohammed Salem, F. Siddiqui Farheen, S. Zafar Sherin, S. Naaz Sameena, M.A. Afshar Alam
Journal: Journal of Natural Remedies
Year: 2024

Synergistic Precision: Integrating Artificial Intelligence and Bioactive Natural Products for Advanced Prediction of Maternal Mental Health During Pregnancy

Authors: N. Irfan Neha, S. Zafar Sherin, I. Hussain Imran
Journal: Journal of Natural Remedies
Year: 2024

Alireza sobbouhi | Predictive Modeling Innovations | Best Researcher Award

Dr. Alireza sobbouhi | Predictive Modeling Innovations | Best Researcher Award

shahid beheshti university | Iran

Author Profile

Early Academic Pursuits 📚

Dr. Alireza Sobbouhi’s academic journey began at Shahid Beheshti University in Iran, where he developed a strong foundation in mathematics, statistics, and computational sciences. His early fascination with complex systems and data-driven decision-making led him to specialize in predictive modeling. This interest propelled him into graduate studies, where he focused on developing and applying sophisticated techniques for forecasting and analyzing data.

Professional Endeavors 💼

Dr. Sobbouhi’s career blends academic achievements with professional success. As a professor at Shahid Beheshti University, he has been deeply involved in teaching, research, and industry collaboration. His role in academia extends beyond teaching as he works on impactful projects that link predictive modeling with real-world applications, from healthcare to finance. His expertise has also made him a sought-after consultant, furthering his reach and influence in both academia and industry.

Contributions and Research Focus On Predictive Modeling Innovations🔬

Dr. Sobbouhi’s research is rooted in the advancement of predictive modeling. His contributions have introduced new methodologies to improve the accuracy and efficiency of data analysis in various domains. Some key areas of focus include:

  • Development of Predictive Algorithms: Crafting algorithms that provide more precise predictions in economic, healthcare, and environmental sectors.
  • Machine Learning Integration: Exploring ways to integrate machine learning techniques into predictive models for better data interpretation and forecasting.
  • Big Data Analytics: Focusing on scalable approaches to handle and analyze massive datasets to uncover patterns that traditional models might miss.

Impact and Influence 🌍

Dr. Sobbouhi’s work has had a profound impact, not only in academia but also across various industries. His innovative contributions to predictive modeling and machine learning have influenced numerous researchers and professionals in fields ranging from economics to environmental science. His approach to enhancing model reliability and interpretability has set new standards and inspired further research in data science. The applications of his work continue to improve decision-making processes worldwide.

Academic Cites 📑

Dr. Sobbouhi’s research has been extensively cited in scholarly articles, journals, and conferences, indicating the high regard in which his work is held. His studies on predictive analytics and statistical modeling have been foundational, influencing a wide range of studies in machine learning and data science. The frequency of his citations reflects the relevance and significance of his contributions to the broader scientific community.

Technical Skills 🧑‍💻

Dr. Sobbouhi possesses a diverse and deep technical skill set that includes:

  • Programming: Expertise in Python, R, and MATLAB for data analysis and modeling.
  • Statistical Modeling: Advanced proficiency in developing and applying statistical techniques for prediction and forecasting.
  • Machine Learning: Expertise in applying machine learning algorithms to large datasets to uncover trends and make predictions.
  • Data Visualization: Strong skills in visualizing complex datasets to facilitate understanding and decision-making.

These technical competencies allow him to tackle complex datasets and develop state-of-the-art predictive models.

Teaching Experience 🏫

As an educator, Dr. Sobbouhi has taught a variety of courses on statistics, data science, and machine learning at Shahid Beheshti University. His teaching style blends theoretical knowledge with practical applications, ensuring students are well-prepared for the real-world challenges of the data science field. Dr. Sobbouhi has also supervised many graduate students, guiding them in their research and helping to shape the next generation of data scientists.

Legacy and Future Contributions 🔮

Dr. Sobbouhi’s legacy is built on his innovative contributions to predictive modeling and data science. His ability to bridge the gap between academic theory and industry application has had a lasting influence on both fields. Looking ahead, Dr. Sobbouhi is expected to continue making groundbreaking advancements in predictive analytics, particularly in the integration of AI and machine learning into real-world applications. His future research will likely shape the development of new predictive tools, influencing a wide range of industries for years to come.

Notable Publications  📑 

A novel predictor for areal blackout in power system under emergency state using measured data
    • Authors: Not provided in the source, but typically listed in the full article.
    • Journal: Electric Power Systems Research
    • Year: 2025
A novel SVM ensemble classifier for predicting potential blackouts under emergency condition using on-line transient operating variables
    • Authors: Not provided in the source, but typically listed in the full article.
    • Journal: Electric Power Systems Research
    • Year: 2025 (April issue)
Transient stability improvement based on out-of-step prediction
    • Authors: Not provided in the source, but typically listed in the full article.
    • Journal: Electric Power Systems Research
    • Year: 2021
Transient stability prediction of power system; a review on methods, classification and considerations
    • Authors: Not provided in the source, but typically listed in the full article.
    • Journal: Electric Power Systems Research
    • Year: 2021
Online synchronous generator out-of-step prediction by electrical power curve fitting
    • Authors: Alireza Sobbouhi (main author)
    • Journal: IET Generation, Transmission and Distribution
    • Year: 2020
Online synchronous generator out-of-step prediction by ellipse fitting on acceleration power – Speed deviation curve
    • Authors: Alireza Sobbouhi (main author)
    • Journal: International Journal of Electrical Power and Energy Systems
    • Year: 2020

Jing An | Artificial Intelligence | Best Researcher Award

Dr. Jing An | Artificial Intelligence | Best Researcher Award

Yancheng Institute of Technology, China

👨‍🎓Professional Profile

Scopus Profile

👨‍🏫 Summary

Dr. Jing An is a distinguished professor and master tutor at Yancheng Institute of Technology, China. He specializes in intelligent manufacturing engineering, industrial big data fault diagnosis, and residual life prediction. With numerous patents and software copyrights, Dr. An has published over 20 SCI/EI indexed papers and contributed to key academic texts. His pioneering research in artificial intelligence-based fault diagnosis has earned him prestigious awards, including first-place recognition in the China Commerce Federation Science and Technology Award .

🎓 Education

Dr. An holds a Ph.D. in Computer Science from Hohai University (2021) and a Master’s degree in Computer Science from Harbin University of Science and Technology (2006). His academic foundation has strongly influenced his research in AI and fault diagnosis.

💼 Professional Experience

Having joined Yancheng Institute of Technology in 2006, Dr. An is also the Vice President of Science and Technology for Jiangsu Province’s “Double Innovation Plan.” He has led numerous provincial-level projects, and his expertise has extended to more than 10 industry partnerships 🚀.

📚 Academic Citations

Dr. An has authored over 20 peer-reviewed papers in prestigious journals such as IEEE Access and Mathematical Problems in Engineering. His impactful research on AI-based fault diagnosis methods is frequently cited within the academic community .

🔧 Technical Skills

Dr. An is skilled in AI-based fault diagnosis, deep learning, machine learning, and industrial big data analytics. He has expertise in Convolutional Neural Networks (CNNs) and intelligent manufacturing systems, focusing on improving machinery reliability and efficiency .

🧑‍🏫 Teaching Experience

Dr. An has been recognized as an outstanding teacher twice at Yancheng Institute of Technology. He teaches courses in intelligent manufacturing engineering and industrial big data fault diagnosis, preparing students to advance in the field of AI and data science .

🔍 Research Interests

Dr. An’s research is focused on developing intelligent systems for fault diagnosis in rotating machinery, predictive maintenance, and the application of deep learning techniques in industrial big data. His work aims to enhance manufacturing processes and equipment reliability .

📖Top Noted Publications

Hybrid Mechanism and Data-Driven Approach for Predicting Fatigue Life of MEMS Devices by Physics-Informed Neural Networks

Authors: Cheng, J., Lu, J., Liu, B., An, J., Shen, A.

Journal: Fatigue and Fracture of Engineering Materials and Structures

Year: 2024

Bearing Intelligent Fault Diagnosis Based on Convolutional Neural Networks

Authors: An, J., An, P.

Journal: International Journal of Circuits, Systems and Signal Processing

Year: 2022

Deep Clustering Bearing Fault Diagnosis Method Based on Local Manifold Learning of an Autoencoded Embedding

Authors: An, J., Ai, P., Liu, C., Xu, S., Liu, D.

Journal: IEEE Access

Year: 2021

Deep Domain Adaptation Model for Bearing Fault Diagnosis with Riemann Metric Correlation Alignment

Authors: An, J., Ai, P.

Journal: Mathematical Problems in Engineering

Year: 2020

Deep Domain Adaptation Model for Bearing Fault Diagnosis with Domain Alignment and Discriminative Feature Learning

Authors: An, J., Ai, P., Liu, D.

Journal: Shock and Vibration

Year: 2020