Yanjie Zhu | Algorithm Development | Best Researcher Award

Prof. Yanjie Zhu | Algorithm Development | Best Researcher Award

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

👨‍🎓Professional Profiles

🔬 Summary

Prof. Yanjie Zhu is a renowned expert in fast magnetic resonance imaging (MRI) and its applications in medical diagnostics. He specializes in developing innovative imaging techniques through machine learning, deep learning, and model-driven methods. As a Professor at the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, he leads cutting-edge research projects focused on cardiovascular imaging, brain health, and intelligent diagnostic tools.

🎓 Education

Prof. Zhu earned his Ph.D. in Circuits and Systems from the Shanghai Institute of Technical Physics, Chinese Academy of Sciences, China (2006-2011). He also holds a B.S. in Electronic Engineering and Information Science from the University of Science and Technology of China, Hefei (2002-2006).

🏫 Professional Experience

Prof. Zhu has a distinguished academic career at the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, where he progressed from Assistant Professor (2011-2015) to Associate Professor (2015-2020), and is currently a Professor (2020-present). Additionally, he served as a Visiting Scholar (2017-2018) at Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, under the guidance of Reza Nezafat.

đź“š Academic Contributions

Prof. Zhu has published several impactful papers in the field of MRI and medical imaging. Notable works include:

  • “Online reconstruction of fast dynamic MR imaging using deep low-rank plus sparse network,” IEEE CBMS, 2022.
  • “k-space based reconstruction method for wave encoded bSSFP sequence,” CECIT, 2021.
  • “Quantification of pectinate muscles inside left atrial appendage from CT images using fractal analysis,” ICMIPE, 2021.
  • Myocardial Edema Imaging – A Comparison of Three Techniques, ISMRM 2018 (Power Pitch, Magna Cum Laude Merit Award).

🔍 Research Interests

Prof. Zhu’s research interests revolve around model-driven fast MRI techniques, generative model-based adaptive MRI methods, and diffusion tensor and edema imaging for myocardial and brain tissue. He is also focused on intelligent diagnosis for the early detection of stroke-related plaques and other cardiovascular conditions.

đź’» Technical Skills

Prof. Zhu is highly skilled in MRI imaging techniques, including fast MRI, cardiac MRI, and brain MRI. He also excels in deep learning and AI-based image reconstruction methods, along with proficiency in medical imaging software and model-driven approaches. His expertise in data analysis and computational methods has contributed to advancing medical applications.

👨‍🏫 Teaching Experience

Throughout his career, Prof. Zhu has mentored and taught graduate students and professionals in the fields of MRI technology, medical imaging, and computational healthcare methods. His research-driven approach has helped develop comprehensive educational materials that support the training of professionals in advanced imaging systems.

đź“–Top Noted Publications

RS-MOCO: A deep learning-based topology-preserving image registration method for cardiac T1 mapping

Authors: Chiyi Huang, Longwei Sun, Dong Liang, Haifeng Liang, Hongwu Zeng, Yanjie Zhu
Journal: Computers in Biology and Medicine
Year: 2024

High-Frequency Space Diffusion Model for Accelerated MRI

Authors: Chentao Cao, Zhuo-Xu Cui, Yue Wang, Shaonan Liu, Taijin Chen, Hairong Zheng, Dong Liang, Yanjie Zhu
Journal: IEEE Transactions on Medical Imaging
Year: 2024

SPIRiT-Diffusion: Self-Consistency Driven Diffusion Model for Accelerated MRI

Authors: Zhuo-Xu Cui, Chentao Cao, Yue Wang, Sen Jia, Jing Cheng, Xin Liu, Hairong Zheng, Dong Liang, Yanjie Zhu
Journal: IEEE Transactions on Medical Imaging
Year: 2024

A Two-Stage Generative Model with CycleGAN and Joint Diffusion for MRI-based Brain Tumor Detection

Authors: Wenxin Wang, Zhuo-Xu Cui, Guanxun Cheng, Chentao Cao, Xi Xu, Ziwei Liu, Haifeng Wang, Yulong Qi, Dong Liang, Yanjie Zhu
Journal: IEEE Journal of Biomedical and Health Informatics
Year: 2024

High efficiency free-breathing 3D thoracic aorta vessel wall imaging using self-gating image reconstruction

Authors: Caiyun Shi, Congcong Liu, Shi Su, Haifeng Wang, Xin Liu, Hairong Zheng, Dong Liang, Yanjie Zhu
Journal: Magnetic Resonance Imaging
Year: 2024

Physics-Driven Deep Learning Methods for Fast Quantitative Magnetic Resonance Imaging

Authors: Yanjie Zhu, Jing Cheng, Zhuo-Xu Cui, et.al.
Journal: IEEE Signal Processing Magazine
Year: 2023

Jing An | Artificial Intelligence | Best Researcher Award

Dr. Jing An | Artificial Intelligence | Best Researcher Award

Yancheng Institute of Technology, China

👨‍🎓Professional Profile

Scopus Profile

👨‍🏫 Summary

Dr. Jing An is a distinguished professor and master tutor at Yancheng Institute of Technology, China. He specializes in intelligent manufacturing engineering, industrial big data fault diagnosis, and residual life prediction. With numerous patents and software copyrights, Dr. An has published over 20 SCI/EI indexed papers and contributed to key academic texts. His pioneering research in artificial intelligence-based fault diagnosis has earned him prestigious awards, including first-place recognition in the China Commerce Federation Science and Technology Award .

🎓 Education

Dr. An holds a Ph.D. in Computer Science from Hohai University (2021) and a Master’s degree in Computer Science from Harbin University of Science and Technology (2006). His academic foundation has strongly influenced his research in AI and fault diagnosis.

đź’Ľ Professional Experience

Having joined Yancheng Institute of Technology in 2006, Dr. An is also the Vice President of Science and Technology for Jiangsu Province’s “Double Innovation Plan.” He has led numerous provincial-level projects, and his expertise has extended to more than 10 industry partnerships 🚀.

đź“š Academic Citations

Dr. An has authored over 20 peer-reviewed papers in prestigious journals such as IEEE Access and Mathematical Problems in Engineering. His impactful research on AI-based fault diagnosis methods is frequently cited within the academic community .

🔧 Technical Skills

Dr. An is skilled in AI-based fault diagnosis, deep learning, machine learning, and industrial big data analytics. He has expertise in Convolutional Neural Networks (CNNs) and intelligent manufacturing systems, focusing on improving machinery reliability and efficiency .

🧑‍🏫 Teaching Experience

Dr. An has been recognized as an outstanding teacher twice at Yancheng Institute of Technology. He teaches courses in intelligent manufacturing engineering and industrial big data fault diagnosis, preparing students to advance in the field of AI and data science .

🔍 Research Interests

Dr. An’s research is focused on developing intelligent systems for fault diagnosis in rotating machinery, predictive maintenance, and the application of deep learning techniques in industrial big data. His work aims to enhance manufacturing processes and equipment reliability .

đź“–Top Noted Publications

Hybrid Mechanism and Data-Driven Approach for Predicting Fatigue Life of MEMS Devices by Physics-Informed Neural Networks

Authors: Cheng, J., Lu, J., Liu, B., An, J., Shen, A.

Journal: Fatigue and Fracture of Engineering Materials and Structures

Year: 2024

Bearing Intelligent Fault Diagnosis Based on Convolutional Neural Networks

Authors: An, J., An, P.

Journal: International Journal of Circuits, Systems and Signal Processing

Year: 2022

Deep Clustering Bearing Fault Diagnosis Method Based on Local Manifold Learning of an Autoencoded Embedding

Authors: An, J., Ai, P., Liu, C., Xu, S., Liu, D.

Journal: IEEE Access

Year: 2021

Deep Domain Adaptation Model for Bearing Fault Diagnosis with Riemann Metric Correlation Alignment

Authors: An, J., Ai, P.

Journal: Mathematical Problems in Engineering

Year: 2020

Deep Domain Adaptation Model for Bearing Fault Diagnosis with Domain Alignment and Discriminative Feature Learning

Authors: An, J., Ai, P., Liu, D.

Journal: Shock and Vibration

Year: 2020

Haixia Mao | Data Science | Best Researcher Award

Dr. Haixia Mao | Data Science | Best Researcher Award

Shenzhen Polytechnic University, China

👨‍🎓Professional Profile

Scopus Profile

👩‍🏫 Summary

Dr. Haixia Mao is an Associate Professor at the School of Automobile and Transportation at Shenzhen Polytechnic University, China. She holds a Ph.D. in Geographic Information System (GIS) and Remote Sensing from the Hong Kong Polytechnic University. Her research focuses on GIS-T, big data analytics, and analyzing urban mobility patterns, using spatial-temporal data from transportation systems to improve urban planning and human behavior modeling.

🎓 Education

Dr. Mao earned her Ph.D. in GIS and Remote Sensing from the Hong Kong Polytechnic University in 2010. She also completed her M.S. in GIS at Wuhan University in 2004 and her B.S. in Photogrammetry and Remote Sensing from Wuhan University.

đź’Ľ Professional Experience

Dr. Mao currently serves as an Associate Professor at Shenzhen Polytechnic University (since 2012), where she has contributed to the development of transportation-related GIS courses. Previously, she worked as a Postdoctoral Researcher at the Hong Kong Polytechnic University from 2014 to 2016, furthering her expertise in urban computing and GIS.

đź“š Research Interests

Her research encompasses GIS-T (Geographic Information Systems for Transportation), big data analytics, remote sensing, deep learning, and urban planning. She investigates the mobility patterns of citizens through traffic data (including taxis, buses, and metro) and leverages spatial-temporal data to enhance urban infrastructure and predict human behavior.

🏅 Academic Contributions

Dr. Mao has authored over 20 peer-reviewed journal articles and conference papers. She has also been awarded a patent for a caching system with a new cache placement method. She has received research grants for spatial-temporal data analytics in transportation and has actively contributed to major projects in urban computing.

đź’» Technical Skills

Dr. Mao’s technical expertise spans GIS, remote sensing, big data analytics, deep learning, and spatial-temporal data analysis. She integrates these advanced techniques to solve complex transportation and urban planning challenges.

đź“š Teaching Experience

Dr. Mao has taught several courses since 2012 at Shenzhen Polytechnic University, including GIS for Transportation, Traffic Engineering Cartography, and Traffic Information Processing. She has a long-standing dedication to educating future professionals in the field of urban planning and transportation technology.

 

đź“–Top Noted Publications

Multiple sclerosis lesions segmentation based on 3D voxel enhancement and 3D alpha matting

Authors: Sun, Y., Zhang, Y., Wang, X., Zeng, Z., Mao, H.
Journal: Chinese Journal of Medical Physics
Year: 2022

Customer attractiveness evaluation and classification of urban commercial centers by crowd intelligence

Authors: Mao, H., Fan, X., Guan, J., Wang, Y., Xu, C.
Journal: Computers in Human Behavior
Year: 2019

 When Taxi Meets Bus: Night bus stop planning over large-scale traffic data

Authors: Xiao, L., Fan, X., Mao, H., Lu, P., Luo, S.
Conference: Proceedings – 2016 7th International Conference on Cloud Computing and Big Data, CCBD 2016
Year: 2017

Characterizing On-Bus WiFi passenger behaviors by approximate search and cluster analysis

Authors: Jiang, M., Fan, X., Zhang, F., Mao, H., Liu, R.
Conference: Proceedings – 2016 7th International Conference on Cloud Computing and Big Data, CCBD 2016
Year: 2017

Efficient visibility analysis for massive observers

Authors: Wang, W., Tang, B., Fan, X., Yang, H., Zhu, M.
Conference: Procedia Computer Science
Year: 2017

Web access patterns enhancing data access performance of cooperative caching in IMANETs

Authors: Fan, X., Cao, J., Mao, H., Zhao, Y., Xu, C.
Conference: Proceedings – IEEE International Conference on Mobile Data Management
Year: 2016

Shubing Dai | Algorithm Development | Best Researcher Award

Prof. Shubing Dai | Algorithm Development | Best Researcher Award

Prof. Shubing Dai at Northwest A&F University, China

Professional Profile👨‍🎓

👨‍🏫 Summary

Prof. Shubing Dai is an Associate Professor at Northwest A&F University, specializing in Hydraulic Engineering. With a background in Hydraulics and River Dynamics, he has published over 20 research papers and actively participated in over 20 research projects. His work primarily focuses on urban flood management, hydraulic structures, and water flow dynamics. He is also an active member of key professional organizations, including the China Society for Hydroelectric Engineering and the International Association for Hydro-Environment Engineering and Research (IAHR).

🎓 Education

Prof. Dai began his academic career at Northwest A&F University, where he earned his Bachelor’s (2008–2012) and Master’s (2012–2015) degrees in Hydraulic and Hydroelectric Engineering. He then pursued a Ph.D. in Hydraulics and River Dynamics at Dalian University of Technology (2016–2021). Additionally, he worked as a visiting scholar at the University of La Coruña in Spain (2024).

đź’Ľ Professional Experience

Prof. Dai has extensive professional experience, both in academia and industry. He currently serves as an Associate Professor at Northwest A&F University and the Department Secretary of the Hydraulic Engineering Department. He also previously worked as an Assistant Engineer at the Changjiang Survey, Planning, and Design Institute (2015–2016), contributing to several major hydropower and hydraulic engineering projects.

đź“š Academic Contributions

Prof. Dai is an active contributor to the academic community, serving as a reviewer for several leading journals such as Journal of Hydrology and Physics of Fluids. He also serves as an editorial board member for an international journal. His research focuses on water resources, hydraulic structures, and flow dynamics, with over 20 published papers and several high-impact research projects.

🔧 Technical Skills

Prof. Dai has developed a range of technical skills, including:

  • Hydraulic Engineering: Focus on energy dissipation and optimization of flood discharge systems.
  • Urban Flooding & Drainage: Expertise in urban drainage system design, stormwater management, and flood mitigation.
  • Flow Dynamics: Proficient in Computational Fluid Dynamics (CFD) and non-steady flow simulations for hydraulic applications.
  • Hydropower Engineering: In-depth research on dam-break flood modeling, hydraulic structures, and their interactions with water flow.

👩‍🏫 Teaching Experience

As a dedicated educator, Prof. Dai mentors master’s students and teaches courses on fluid dynamics, hydraulic modeling, and water resource management. He is also responsible for the administration of the Water Resources and Hydroelectric Engineering department at Northwest A&F University, playing a key role in curriculum development and academic planning.

🔬 Research Interests

Prof. Dai’s research interests are focused on:

  • Hydraulic Engineering: Research on energy dissipation in hydraulic structures and optimization of flood discharge processes.
  • Flood Disaster Management: Urban flood management, drainage systems, and dam-break flood evolution.
  • Non-steady Flow & Hydrodynamics: Investigating the dynamics of free-surface flows, wave behavior, and non-constant flow conditions in hydraulic systems.

🔍 Research Projects

Prof. Dai leads and participates in several important research projects, such as:

  • City Flood and Drainage Systems Simulation (2022–2025)
  • Optimization of Urban Drainage Under Extreme Rainfall Conditions (2023–2025)
  • Dam-Break Flood Evolution and Structural Interaction Studies (2024–2026)
    He is also involved in national and regional projects on hydraulic structure optimization, flood forecasting, and water resource management.

 

đź“–Top Noted Publications

Numerical study of roll wave development for non-uniform initial conditions using steep slope shallow water equations

Authors: Dai, S., Liu, X., Zhang, K., Liu, H., Jin, S.
Journal: Physics of Fluids
Year: 2024

Discharge coefficients formulae of grate inlets of complicated conditions for urban floods simulation and urban drainage systems design

Authors: Dai, S., Hou, J., Jin, S., Hou, J., Liu, G.
Journal: Journal of Hydrology
Year: 2023

Land Degradation Caused by Construction Activity: Investigation, Cause and Control Measures

Authors: Dai, S., Ma, Y., Zhang, K.
Journal: International Journal of Environmental Research and Public Health
Year: 2022

Numerical investigations of unsteady critical flow conditions over an obstacle using three models

Authors: Dai, S., Jin, S.
Journal: Physics of Fluids
Year: 2022

Interception efficiency of grate inlets for sustainable urban drainage systems design under different road slopes and approaching discharges

Authors: Dai, S., Jin, S., Qian, C., Ma, Y., Liang, C.
Journal: Urban Water Journal
Year: 2021

Yun Xing | Computer Vision | Best Researcher Award

Mr. Yun Xing | Computer Vision | Best Researcher Award

Mr. Yun Xing at The First Affiliated Hospital of Xi’an Jiaotong University, China

👨‍🎓Professional Profile

🎓 Education and Academic Background

I am currently a second-year Ph.D. student at VI-Lab, Nanyang Technological University (NTU), under the supervision of Prof. Shijian Lu. I received my B.S. degree in Biomedical Engineering and Instrument Science from Zhejiang University in 2021, where I worked under the guidance of Prof. Hong Zhou. Prior to my Ph.D., I completed my Master’s in Artificial Intelligence at NTU (2021–2022). My research interests primarily focus on vision-language pre-training and foundation model adaptation.

🔬 Research Interests

My research revolves around cutting-edge topics in vision-language pre-training and the adaptation of foundation models. I am particularly interested in methods that enable models to transfer knowledge effectively across different domains, such as few-shot learning, cross-domain adaptation, and improving model robustness in complex vision-language tasks.

🏆 Achievements and News

In recent years, I have been fortunate to have several papers accepted at top-tier conferences. These include NeurIPS 2024, ECCV 2024, CVPR 2024, and NeurIPS 2023, marking significant milestones in my academic journey. Notably, my work on object hallucination mitigation and segmentation adaptation has received considerable attention in the community.

🏅 Awards and Honors

Throughout my academic journey, I have received various recognitions for my contributions to research. These include the Outstanding Graduate Award from Zhejiang University in 2021, as well as the Academic Excellence Award (2018, 2019) and Academic Progress Award (2019) from the same institution.

đź’» Service and Teaching

As an active member of the academic community, I contribute as a conference reviewer for prominent venues such as CVPR, ICML, ECCV, and NeurIPS 2024, where I was honored to be selected as one of the Top Reviewers at NeurIPS. Additionally, I am involved in teaching and mentoring at NTU. In Spring 2024, I will be assisting with the SC1015: Introduction to Data Science and Artificial Intelligence course.

Chengjie Sun – Natural Lanauage processing – Best Researcher Award 

Assoc Prof Dr Chengjie Sun - Natural Lanauage processing - Best Researcher Award 

Harbin Institute of Technology - China

Author Profile:

Early Academic Pursuits

Assoc Prof Dr Chengjie Sun began his academic journey at Yantai University, where he pursued a Bachelor's degree in Computer Science and Technology from 1998 to 2002. Subsequently, he continued his education at Harbin Institute of Technology, achieving a Master's degree in Computer Science and Technology from 2002 to 2004. Later, he furthered his academic pursuits at the same institute, obtaining his Doctorate in Computer Application Technology from 2004 to 2008.

Professional Endeavors

After completing his doctoral studies, Assoc Prof Dr Chengjie Sun embarked on an illustrious professional journey. He joined the Harbin Institute of Technology's School of Computer Science and Technology as a Lecturer from January 2009 to December 2014. In 2013, he expanded his academic horizons by serving as a Visiting Scholar at the Massachusetts Institute of Technology's Computer Science and Artificial Intelligence Laboratory (CSAIL). Since January 2015, he has held the position of Associate Professor at the Harbin Institute of Technology.

Additionally, Assoc Prof Dr Chengjie Sun enriched his professional experience by collaborating with renowned institutions and organizations. He served as a Visiting Scholar at Microsoft Research Asia's Natural Language Computing Group from September 2011 to July 2012.

Contributions and Research Focus

Assoc Prof Dr Chengjie Sun's research interests primarily revolve around natural language processing technologies and their applications, recommender systems, and machine learning. His scholarly contributions encompass a wide range of topics, including offensive message identification, explainable dialogue systems, fake news detection, response generation, user modeling, and named entity recognition, among others. Through his extensive peer-reviewed publications in reputable journals and conferences, Chengjie Sun has significantly advanced the field of computer science and technology.

Accolades and Recognition

Assoc Prof Dr Chengjie Sun's exemplary contributions to academia have earned him prestigious accolades and recognition. In 2011, he received the First Prize of the Heilongjiang Science and Technology Award for his work on Sentence Level Pinyin Input Method in a Network Environment. His research endeavors and innovative approaches have consistently garnered acknowledgment from peers and experts in the field.

Impact and Influence

Assoc Prof Dr Chengjie Sun's research and teaching endeavors have had a profound impact on the academic community and industry alike. His publications in leading journals and conferences have contributed to the advancement of natural language processing, machine learning, and recommender systems. Furthermore, his collaborative efforts with esteemed institutions and professional memberships have facilitated knowledge exchange and interdisciplinary collaborations, fostering innovation and growth in the field.

Legacy and Future Contributions

As an Associate Professor at the Harbin Institute of Technology, Chengjie Sun continues to inspire and mentor future generations of computer scientists and researchers. His dedication to advancing knowledge and fostering excellence in research and teaching serves as a testament to his commitment to the academic community. Moving forward, Chengjie Sun's ongoing research endeavors and contributions are poised to shape the future of natural language processing technologies, recommender systems, and machine learning, leaving a lasting legacy in the field.

Citations

Notable Publication 

 

 

Pushpa-Medical Image Processing, Biomedical Engineering-Best Researcher Award

Author Profile

Google Scholar

Early Academic Pursuits

Mrs. Pushpa B embarked on her academic journey with a Bachelor's in Electronics and Instrumentation from St. Peter’s Engineering College, affiliated with Anna University, in 2007. Her dedication to the field was evident as she secured a commendable 73%. Building upon this foundation, she pursued an M.Tech in Electronics and Control from SRM University, Chennai, where she achieved a CGPA of 6.99 in 2010. The continuous academic excellence led her to undertake an MBA in Health Service Management from Anna University in 2023. Currently, she is on the verge of completing her Ph.D. in Medical Image Processing & Artificial Intelligence from Annamalai University, with her thesis submitted.

Professional Endeavors

With an illustrious academic background, Mrs. Pushpa B transitioned into academia, where she has made significant contributions. She held the position of Assistant Professor in various esteemed institutions such as B.S. Abdur Rahman Crescent Institute of Science and Technology and Velammal Institute of Technology. During her tenure, she shouldered numerous responsibilities, including curriculum development, university department audit coordination, and acting as a placement coordinator.

Contributions and Research Focus

Mrs. Pushpa B's expertise spans across diverse fields, including Analog Electronic Circuits, Digital Signal Processing, Machine Learning, and more. Her research primarily revolves around Medical Image Processing, Artificial Intelligence, and Bio-medical Instrumentation. Notably, she has undertaken projects like "Detection of Startle Type Epilepsy using Machine Learning Technique" at Global Medical Hospital, Chennai. Her research is widely recognized, with numerous international and national publications and conference presentations to her credit.

Accolades and Recognition

Mrs. Pushpa B's contributions to the academic and research communities have garnered her several accolades. She has published patents, notably one on "Intelligent estimation of liver fat and its stages by using DICOM." Furthermore, her publications in renowned journals like Technology and Health Care and Measurement Sensors, among others, testify to her expertise and recognition in her field.

Impact and Influence

Mrs. Pushpa B's influence extends beyond her academic and research endeavors. She has organized workshops, training programs, and conferences that have facilitated knowledge dissemination and skill enhancement for students, faculty, and industry professionals alike. Her expertise as a reviewer for esteemed platforms like Taylor & FrancisOnline, Elsevier, and IEEE Xplore further amplifies her impact in the scholarly community.

Legacy and Future Contributions

As a dedicated academician and researcher, Mrs. Pushpa B's legacy is marked by her commitment to advancing knowledge in her specialized domains. Her future contributions are anticipated to further bridge the gap between technology and healthcare, particularly in leveraging AI and machine learning techniques for enhanced medical diagnostics and treatments. With her relentless pursuit of excellence, she is poised to inspire future generations of researchers and academicians in the realms of Medical Image Processing and Artificial Intelligence.

In conclusion, Mrs. Pushpa B's academic pursuits, professional endeavors, and contributions to the field of Medical Image Processing and Artificial Intelligence stand as a testament to her passion, expertise, and commitment. Her multifaceted accomplishments underscore her potential to drive significant advancements and make lasting contributions to academia and healthcare.

NOTABLE PUBLICATION